
LEAP: Library for Evolutionary
Algorithms in Python Documentation

Release v0.9dev

Mark Coletti, Eric O. Scott, and Jeffrey K. Bassett

Feb 22, 2024

CONTENTS:

1 Quickstart Guide 1
1.1 Using LEAP . 1

1.1.1 Simple Example . 1
1.1.2 Genetic Algorithm Example . 2
1.1.3 More Examples . 3

1.2 Documentation . 3
1.3 Installing from Source . 3

1.3.1 Run the Test Suite . 3
1.4 Acknowledgements . 4
1.5 Citing LEAP . 4

2 LEAP Concepts 5
2.1 Core Classes . 5
2.2 Operator Pipeline . 5
2.3 Detailed Explanations . 7

2.3.1 Individuals . 7
2.3.2 Decoders . 11
2.3.3 Representations . 17
2.3.4 Problems . 29
2.3.5 Pipeline Operators . 76
2.3.6 Context . 100
2.3.7 Probes . 100
2.3.8 Parsimony Pressure . 113
2.3.9 Visualization . 114

3 Prebuilt Algorithms 117
3.1 ea_solve() . 118

3.1.1 Example . 120
3.2 generational_ea() . 120

3.2.1 Example . 122

4 Implementing Tailored Evolutionary Algorithms with LEAP 123
4.1 Deciding on a suitable representation . 123

4.1.1 Decoders for binary representations . 124
4.1.2 Impact on representation on choice of pipeline operators 124
4.1.3 LEAP supports three numeric representations . 124
4.1.4 Support for exotic representations . 124

4.2 Defining a Problem subclass . 124
4.3 Possibly defining or choosing a special Individual subclass . 125
4.4 Putting all that together . 125

i

4.4.1 Evolutionary algorithm examples . 125

5 Distributed LEAP 127
5.1 Synchronous fitness evaluations . 127

5.1.1 Components . 127
5.1.2 Example . 127
5.1.3 Separate Examples . 130

5.2 Asynchronous fitness evaluations . 130
5.2.1 Example . 131
5.2.2 DistributedIndividual . 133
5.2.3 Separate Examples . 133

6 Multiobjective Optimization 135
6.1 Using generalized_nsga_2 . 135

6.1.1 Example . 135
6.2 Creating a tailored NSGA-II . 136

6.2.1 Example . 136
6.3 Representing multiple fitnesses . 137
6.4 Asynchronous steady-state multiobjective optimization . 138
6.5 References . 138

7 LEAP Cookbook 139
7.1 Enforcing problem bounds constraints . 139

7.1.1 Bounds for initialization . 139
7.1.2 Enforcing bounds during mutation . 140

8 Common Problems 141
8.1 min() returns the worst individual for minimization problems . 141
8.2 Missing pipeline operator arguments . 141

9 Roadmap 143

10 leap_ec package 145
10.1 Subpackages . 145

10.1.1 leap_ec.binary_rep package . 145
10.1.2 leap_ec.contrib package . 150
10.1.3 leap_ec.distrib package . 151
10.1.4 leap_ec.executable_rep package . 157
10.1.5 leap_ec.int_rep package . 173
10.1.6 leap_ec.landscape_features package . 177
10.1.7 leap_ec.multiobjective package . 180
10.1.8 leap_ec.real_rep package . 191
10.1.9 leap_ec.segmented_rep package . 233

10.2 Submodules . 237
10.3 leap_ec.algorithm module . 237
10.4 leap_ec.data module . 242
10.5 leap_ec.decoder module . 242
10.6 leap_ec.distrib module . 244
10.7 leap_ec.global_vars module . 244
10.8 leap_ec.individual module . 244
10.9 leap_ec.multiobjective module . 246
10.10 leap_ec.ops module . 246
10.11 leap_ec.parsimony module . 260
10.12 leap_ec.probe module . 261
10.13 leap_ec.problem module . 274

ii

10.14 leap_ec.representation module . 280
10.15 leap_ec.simple module . 280
10.16 leap_ec.statistical_helpers module . 282
10.17 leap_ec.util module . 283
10.18 Module contents . 286

11 References 287

12 Indices and tables 289

Bibliography 291

Python Module Index 293

Index 295

iii

iv

CHAPTER

ONE

QUICKSTART GUIDE

LEAP: Evolutionary Algorithms in Python
Written by Dr. Jeffrey K. Bassett, Dr. Mark Coletti, and Eric Scott

LEAP is a general purpose Evolutionary Computation package that combines readable and easy-to-use syntax for search
and optimization algorithms with powerful distribution and visualization features.

LEAP’s signature is its operator pipeline, which uses a simple list of functional operators to concisely express a meta-
heuristic algorithm’s configuration as high-level code. Adding metrics, visualization, or special features (like distribu-
tion, coevolution, or island migrations) is often as simple as adding operators into the pipeline.

1.1 Using LEAP

Get the stable version of LEAP from the Python package index with

pip install leap_ec

1.1.1 Simple Example

The easiest way to use an evolutionary algorithm in LEAP is to use the leap_ec.simple package, which contains simple
interfaces for pre-built algorithms:

from leap_ec.simple import ea_solve

def f(x):
"""A real-valued function to be optimized."""
return sum(x)**2

ea_solve(f, bounds=[(-5.12, 5.12) for _ in range(5)], maximize=True)

1

https://travis-ci.org/AureumChaos/LEAP
https://coveralls.io/github/AureumChaos/LEAP?branch=master
https://leap-gmu.readthedocs.io/en/latest/?badge=latest

LEAP: Library for Evolutionary Algorithms in Python Documentation, Release v0.9dev

1.1.2 Genetic Algorithm Example

The next-easiest way to use LEAP is to configure a custom algorithm via one of the metaheuristic functions in the
leap_ec.algorithms package. These interfaces off you a flexible way to customize the various operators, representations,
and other components that go into a modern evolutionary algorithm.

Here’s an example that applies a genetic algorithm variant to solve the MaxOnes optimization problem. It uses bitflip
mutation, uniform crossover, and binary tournament_selection selection:

from leap_ec.algorithm import generational_ea
from leap_ec.decoder import IdentityDecoder
from leap_ec.representation import Representation
from leap_ec.binary_rep.problems import MaxOnes
from leap_ec.binary_rep.initializers import create_binary_sequence
from leap_ec.binary_rep.ops import mutate_bitflip
pop_size = 5
ea = generational_ea(generations=100, pop_size=pop_size,

problem=MaxOnes(), # Solve a MaxOnes Boolean␣
→˓optimization problem

representation=Representation(
decoder=IdentityDecoder(), # Genotype and phenotype␣

→˓are the same for this task
initialize=create_binary_sequence(length=10) # Initial genomes␣

→˓are random binary sequences
),

The operator pipeline
pipeline=[ops.tournament_selection, # Select␣

→˓parents via tournament_selection selection
ops.clone, # Copy them (just to be␣

→˓safe)
mutate_bitflip, # Basic mutation:␣

→˓defaults to a 1/L mutation rate
ops.uniform_crossover(p_swap=0.4), # Crossover with a 40%␣

→˓chance of swapping each gene
ops.evaluate, # Evaluate fitness
ops.pool(size=pop_size) # Collect offspring into␣

→˓a new population
])

print('Generation, Best_Individual')
for i, best in ea:

print(f"{i}, {best}")

2 Chapter 1. Quickstart Guide

LEAP: Library for Evolutionary Algorithms in Python Documentation, Release v0.9dev

1.1.3 More Examples

A number of LEAP demo applications are found in the the example directory of the github repository:

git clone https://github.com/AureumChaos/LEAP.git
python LEAP/example/island_models.py

Fig. 1.1: Demo of LEAP running a 3-population island model on a real-valued optimization problem.

1.2 Documentation

The stable version of LEAP’s full documentation is over at ReadTheDocs

If you want to build a fresh set of docs for yourself, you can do so after running make setup:

make doc

This will create HTML documentation in the docs/build/html/ directory. It might take a while the first time, since
building the docs involves generating some plots and executing some example algorithms.

1.3 Installing from Source

To install a source distribution of LEAP, clone the repo:

git clone https://github.com/AureumChaos/LEAP.git

And use the Makefile to install the package:

make setup

1.3.1 Run the Test Suite

LEAP ships with a two-part pytest harness, divided into fast and slow tests. You can run them with

make test-fast

and

make test-slow

respectively.

1.2. Documentation 3

https://github.com/AureumChaos/LEAP/tree/master/examples
https://leap-gmu.readthedocs.io/

LEAP: Library for Evolutionary Algorithms in Python Documentation, Release v0.9dev

Fig. 1.2: Example of healthy PyTest output.

1.4 Acknowledgements

This effort used resources of the Oak Ridge Leadership Computing Facility for developing LEAP’s distributed evalua-
tion capability, and which is a DOE Office of Science User Facility supported under Contract DE-AC05-00OR22725.

We would also like to thank the Department of Energy’s Vehicle Technologies Office (VTO) for their funding support.

1.5 Citing LEAP

BiBTeX:

@inproceedings{10.1145/3377929.3398147,
Address = {New York, NY, USA},
Author = {Coletti, Mark A. and Scott, Eric O. and Bassett, Jeffrey K.},
Booktitle = {Proceedings of the 2020 Genetic and Evolutionary Computation␣

→˓Conference Companion},
Doi = {10.1145/3377929.3398147},
Isbn = {9781450371278},
Keywords = {evolutionary algorithm, toolkit, software},
Location = {Canc\'{u}n, Mexico},
Numpages = {9},
Pages = {1571--1579},
Publisher = {Association for Computing Machinery},
Series = {GECCO '20},
Title = {Library for Evolutionary Algorithms in Python (LEAP)},
Url = {https://doi.org/10.1145/3377929.3398147},
Year = {2020}}

4 Chapter 1. Quickstart Guide

CHAPTER

TWO

LEAP CONCEPTS

This section summarizes the main classes and the operator pipeline that use them.

2.1 Core Classes

Fig. 2.1: The core classes Individual, Problem, and Decoder are the three classes upon which the rest of the toolkit
rests.

Three classes work in tandem to represent and evaluate solutions: Individual, Problem, and Decoder. The relationship
between these classes is depicted in Fig. 2.1, and shows that the Individual is the design’s keystone, and encapsulates
posed solutions to a Problem. Problem implements the semantics for a given problem to be solved, and which Individual
uses to compute its fitness. Problem also implements how any two given Individuals are “better than” or “equivalent”
to one another. The Decoder translates an Individuals genome into a phenome, or values meaningful to the associated
Problem for fitness evaluation; for example, a Decoder may translate a bit sequence into a vector of real-values that are
then passed to the Problem as parameters during evaluation.

2.2 Operator Pipeline

If the above classes are the “nouns” of LEAP, the pipeline operators are the “verbs” that work on those “nouns.” The
overarching concept of the pipeline is similar to *nix style text processing command lines, where a sequence of operators
pipe output of one text processing utility into the next one with the last one returning the final results. For example:

> cut -d, -f 4,5,8 results.csv | head -4 | column -t -s,
birth_id scenario fitness
2 2 -23.2
1 14 6.0
0 36 31.0

This shows the output of cut is passed to head and the output of that is passed to the formatter column, which then
sends its output to stdout.

Here is an example of a LEAP pipeline:

gen = 0
while gen < max_generation:

offspring = toolz.pipe(parents,
ops.tournament_selection,
ops.clone,

(continues on next page)

5

LEAP: Library for Evolutionary Algorithms in Python Documentation, Release v0.9dev

(continued from previous page)

mutate_bitflip,
ops.evaluate,
ops.pool(size=len(parents)))

parents = offspring
gen += 1

The above code snippet is an example of a very basic genetic algorithm implementation that uses a toolz.pipe() function
to link together a series of operators to do the following:

1. binary tournament_selection selection on a set of parents

2. clone those that were selected

3. perform mutation bitflip on the clones

4. evaluate the offspring

5. accumulate as many offspring as there are parents

Essentially the ops. functions are python co-routines that are driven by the last function, ops.pool() , that makes requests
of the upstream operators to fill a pool of offspring. Once the pool is filled, it is returned as the next set of offspring,
which are then assigned to become the parents for the next generation. (mutate_bitflip is in ops but the one for binary
representations; i.e., binary_rep/ops.py. And, since ops is already used, we just directly import mutate_bitflip, which
is why it does not have the ops qualifier.)

Fig. 2.2: LEAP operator pipeline. This figure depicts a typical LEAP operator pipeline. First is a parent population
from which the next operator selects individuals, which are then cloned by the next operator to be followed by operators
for mutating and evaluating the individual. (For brevity, a crossover operator was not included, but could also have
been freely inserted into this pipeline.) The pool operator is a sink for offspring, and drives the demand for the upstream
operators to repeatedly select, clone, mutate, and evaluate individuals repeatedly until the pool has the desired number
of offspring. Lastly, another selection operator returns the final set of individuals based on the offspring pool and
optionally the parents.

Fig. 2.2 depicts a general pattern of LEAP pipeline operators. Typically, the first pipeline element is a source for
individuals followed by some form of selection operator and then a clone operator to create an offspring that is initially
just a copy of the selected parent. Following that there are one or more pertubation operators, and though there is
only a mutation operator shown in the figure, there can be other configurations that also include crossover, among
other pertubation operators. Next, there is an operator to evaluate offspring as they come through pipeline where they
are collected by a pooling operator. And, lastly, there can be a survival selection operator to determine survivors for
the next generation, such as truncation selection. (The above code snippet does not have survival selection because it
replaces the parents with the offspring for every generation.)

6 Chapter 2. LEAP Concepts

LEAP: Library for Evolutionary Algorithms in Python Documentation, Release v0.9dev

2.3 Detailed Explanations

More detailed explanations of the concepts shared here are given in the following sections.

2.3.1 Individuals

This section covers the class Individual in more detail.

Class Summary

Fig. 2.3: The `Individual` class This class diagram shows the detail for Individual. In additional to the association
with Decoder and ProbLem, each Individual has a genome and fitness. There are also several member functions for
cloning, decoding, and evaluating individuals. Not shown are such member functions as __repr__() and __str__().

An Individual poses a unique instance of a solution to the associated Problem. Each Individual has a genome, which
contains state representing that posed solution. The genome can be a sequence or a matrix or a tree or some other data
structure, but in practice a genome is usually a binary or a real-value sequence represented as a numpy array. Every
Individual is connected to an associated Problem and relies on the Problem to evaluate its fitness and to compare itself
with another Individual to determine the better of the two.

The clone() method will create a duplicate of a given Individual; the new Individual gets a deep copy of the genome
and refers to the same Problem and Decoder; also, the clone gets its own UUID and has its self.parents set updated
to include the individual from which it was cloned (i.e., its parent). evaluate() calls evaluate_imp() that, in turn, calls
decode() to translate the genome into phenomes, or values meaningful to the Problem, and then passes those values to
the Problem where it returns a fitness. This fitness is then assigned to the Individual.

The reason for the indirection using evaluate_imp() is that evaluate_imp() allows sub-classes to pass ancillary infor-
mation to Problem during evaluation. For example, an Individual may have a UUID that the Problem needs in order
to create a file or sub-directory using that UUID. evaluate_imp() can be over-ridden in a sub-class to pass along the
UUID in addition to the decoded genome.

The @total_ordering class wrapper is used to expand the member functions __lt__() and __eq__() that are, in turn,
heavily used in sorting, selection, and comparison operators.

RobustIndividual

RobustIndividual is a sub-class of Individual that over-rides evaluate() to handle exceptions thrown during evaluation.
If no exceptions are thrown, then self.is_viable is set to True. If an exception happens, then the following occurs:

• self.is_viable is set to False

• self.fitness is set to math.nan

• self.exception is assigned the Exception object

In turn, this class has another sub-class leap_ec.distributed.individual.DistributedIndividual.

2.3. Detailed Explanations 7

LEAP: Library for Evolutionary Algorithms in Python Documentation, Release v0.9dev

Class API

class leap_ec.individual.Individual(genome, decoder=IdentityDecoder(), problem=None)
Represents a single solution to a Problem.

We represent an Individual by a genome and a fitness. Individual also maintains a reference to the Problem it will
be evaluated on, and an decoder, which defines how genomes are converted into phenomes for fitness evaluation.

__init__(genome, decoder=IdentityDecoder(), problem=None)
Initialize an Individual with a given genome. A UUID is generated and assigned to self.uuid. The parents
set is initialized to be empty.

We also require Individual`s to maintain a reference to the `Problem:

>>> from leap_ec.binary_rep.problems import MaxOnes
>>> from leap_ec.decoder import IdentityDecoder
>>> import numpy as np
>>> genome = np.array([0, 0, 1, 0, 1])
>>> ind = Individual(genome, decoder=IdentityDecoder(),
... problem=MaxOnes())
>>> ind.genome
array([0, 0, 1, 0, 1])

Fitness defaults to None:

>>> ind.fitness is None
True

Parameters
• genome – is the genome representing the solution. This can be any arbitrary type that your

mutation operators, probes, etc., know how to read and manipulate—a list, class, numpy
array, etc.

• decoder – is a function or callable that converts a genome into a phenome.

• problem – is the Problem associated with this individual.

clone()

Create a ‘clone’ of this Individual, copying the genome, but not fitness.

The fitness of the clone is set to None. A new UUID is generated and assigned to sefl.uuid. The parents set
is updated to include the UUID of the parent. A shallow copy of the parent is made, too, so that ancillary
state is also copied.

A deep copy of the genome will be created, so if your Individual has a custom genome type, it’s important
that it implements the __deepcopy__() method.

>>> from leap_ec.binary_rep.problems import MaxOnes
>>> from leap_ec.decoder import IdentityDecoder
>>> import numpy as np
>>> genome = np.array([0, 1, 1, 0])
>>> ind = Individual(genome, IdentityDecoder(), MaxOnes())
>>> ind_copy = ind.clone()
>>> ind_copy.genome == ind.genome

(continues on next page)

8 Chapter 2. LEAP Concepts

LEAP: Library for Evolutionary Algorithms in Python Documentation, Release v0.9dev

(continued from previous page)

array([True, True, True, True])
>>> ind_copy.problem == ind.problem
True
>>> ind_copy.decoder == ind.decoder
True

classmethod create_population(n, initialize, decoder, problem)

A convenience method for initializing a population of the appropriate subtype.

Parameters
• n – The size of the population to generate

• initialize – A function f(m) that initializes a genome

• decoder – The decoder to attach individuals to

• problem – The problem to attach individuals to

Returns
A list of n individuals of this class’s (or subclass’s) type

decode(*args, **kwargs)
Determine the indivdual’s phenome.

This is done by passing the genome self.decoder.

The result is both returned and saved to self.phenome.

Returns
the decoded value for this individual

evaluate()

determine this individual’s fitness

This is done by outsourcing the fitness evaluation to the associated Problem object since it “knows” what
is good or bad for a given phenome.

See also
ScalarProblem.worse_than

Returns
the calculated fitness

evaluate_imp()

This is the evaluate ‘implementation’ called by self.evaluate(). It’s intended to be optionally over-ridden by
sub-classes to give an opportunity to pass in ancillary data to the evaluate process either by tailoring the
problem interface or that of the given decoder.

classmethod evaluate_population(population)
Convenience function for bulk serial evaluation of a given population

Parameters
population – to be evaluated

Returns
evaluated population

property phenome

If the phenome has not yet been decoded, do so.

2.3. Detailed Explanations 9

LEAP: Library for Evolutionary Algorithms in Python Documentation, Release v0.9dev

class leap_ec.individual.RobustIndividual(genome, decoder=IdentityDecoder(), problem=None)
This adds exception handling for evaluations

After evaluation self.is_viable is set to True if all went well. However, if an exception is thrown during evaluation,
the following happens:

• self.is_viable is set to False

• self.fitness is set to math.nan

• self.exception is assigned the exception

__init__(genome, decoder=IdentityDecoder(), problem=None)
Initialize an Individual with a given genome. A UUID is generated and assigned to self.uuid. The parents
set is initialized to be empty.

We also require Individual`s to maintain a reference to the `Problem:

>>> from leap_ec.binary_rep.problems import MaxOnes
>>> from leap_ec.decoder import IdentityDecoder
>>> import numpy as np
>>> genome = np.array([0, 0, 1, 0, 1])
>>> ind = Individual(genome, decoder=IdentityDecoder(),
... problem=MaxOnes())
>>> ind.genome
array([0, 0, 1, 0, 1])

Fitness defaults to None:

>>> ind.fitness is None
True

Parameters
• genome – is the genome representing the solution. This can be any arbitrary type that your

mutation operators, probes, etc., know how to read and manipulate—a list, class, numpy
array, etc.

• decoder – is a function or callable that converts a genome into a phenome.

• problem – is the Problem associated with this individual.

evaluate()

determine this individual’s fitness

Note that if an exception is thrown during evaluation, the fitness is set to NaN and self.is_viable to False;
also, the returned exception is assigned to self.exception for possible later inspection. If the individual was
successfully evaluated, self.is_viable is set to true. NaN fitness values will figure into comparing individuals
in that NaN will always be considered worse than non-NaN fitness values.

Returns
the calculated fitness

class leap_ec.individual.WholeEvaluatedIndividual(genome, decoder=IdentityDecoder(),
problem=None)

An Individual that, when evaluated, passes its whole self to the evaluation function, rather than just its phenome.

In most applications, fitness evaluation requires only phenome information, so that is all that we pass from the
Individual to the Problem. This is important, because during distributed evaluation, we want to pass as little
information as possible across nodes.

10 Chapter 2. LEAP Concepts

LEAP: Library for Evolutionary Algorithms in Python Documentation, Release v0.9dev

WholeEvaluatedIndividual is used for special cases where fitness evaluation needs access to more information
about an individual than its phenome. This is strange in most cases and should be avoided, but can make certain
algorithms more elegant (ex. it’s helpful when interpreting cooperative coevolution as an island model).

This can dramatically slow down distributed evaluation (i.e. with dask) in some applications because the entire
individual will be sent over a TCP/IP connection instead of just the phenome, so use with caution.

__init__(genome, decoder=IdentityDecoder(), problem=None)
Initialize an Individual with a given genome. A UUID is generated and assigned to self.uuid. The parents
set is initialized to be empty.

We also require Individual`s to maintain a reference to the `Problem:

>>> from leap_ec.binary_rep.problems import MaxOnes
>>> from leap_ec.decoder import IdentityDecoder
>>> import numpy as np
>>> genome = np.array([0, 0, 1, 0, 1])
>>> ind = Individual(genome, decoder=IdentityDecoder(),
... problem=MaxOnes())
>>> ind.genome
array([0, 0, 1, 0, 1])

Fitness defaults to None:

>>> ind.fitness is None
True

Parameters
• genome – is the genome representing the solution. This can be any arbitrary type that your

mutation operators, probes, etc., know how to read and manipulate—a list, class, numpy
array, etc.

• decoder – is a function or callable that converts a genome into a phenome.

• problem – is the Problem associated with this individual.

evaluate_imp()

This is the evaluate ‘implementation’ called by self.evaluate(). It’s intended to be optionally over-ridden by
sub-classes to give an opportunity to pass in ancillary data to the evaluate process either by tailoring the
problem interface or that of the given decoder.

2.3.2 Decoders

This section covers the Decoder class in more detail.

2.3. Detailed Explanations 11

LEAP: Library for Evolutionary Algorithms in Python Documentation, Release v0.9dev

Class Summary

Fig. 2.4: The Decoder abstract-base class This class diagram shows the detail for Decoder, which is an abstract base
class (ABC). It has just a single abstract function, decode(), that is intended to be defined by subclasses.

The abstract-base class, Decoder , has one function intended to be overridden by sub-classes, decode(), that returns
a phenome meaningful to a given Problem, which is usually a sequence of values. There are a number of supplied
Decoder classes mostly for converting binary strings into integers or real values.

Note that there is also support for Gray encoding. See BinarytoIntGrayDecoder and BinaryToRealGreyDecoder.

Class API

Decoder

class leap_ec.decoder.Decoder

Decoders in LEAP implement how solutions to a problem are represented.
Specifically, a Decoder converts an Individual’s genotype (which is a format that can easily be manipu-
lated by mutation and recombination operators) into a phenotype (which is a format that can be fed directly
into a Problem object to obtain a fitness value).

Genotypes and phenotypes can be of arbitrary type, from a simple list of numbers to a complex data structure.
Choosing a good genotypic representation and genotype-to-phenotype mapping for a given problem domain is a
critical part of evolutionary algorithm design: the Decoder object that an algorithm uses can have a big impact
on the effectiveness of your metaheuristics.

In LEAP, a Decoder is typically used by Individual as an intermediate step in calculating its own fitness.

For example, say that we want to use a binary-represented Individual to solve a real-valued optimization
problem, such as SchwefelProblem. Here, the genotype is a vector of binary values, whereas the phenotype is
its corresponding float vector.

We can use a BinaryToIntDecoder to express this mapping. And when we initialize an individual, we give it
all three pieces of this information:

>>> from leap_ec.binary_rep.decoders import BinaryToRealDecoder
>>> from leap_ec.individual import Individual
>>> from leap_ec.real_rep.problems import SchwefelProblem
>>> import numpy as np
>>> genome = np.array([0, 1, 1, 0, 1, 0, 1, 1])
>>> decoder = BinaryToRealDecoder((4, -5.12, 5.12), (4, -5.12, 5.12)) # Every 4␣
→˓bits map to a float on (-5.12, 5.12)
>>> ind = Individual(genome, decoder=decoder, problem=SchwefelProblem())

Now we can decode the individual to examine its phenotype:

>>> ind.decode()
array([-1.024 , 2.38933333])

This call is just a wrapper for the Decoder, which has the same output:

>>> decoder.decode(genome)
array([-1.024 , 2.38933333])

12 Chapter 2. LEAP Concepts

LEAP: Library for Evolutionary Algorithms in Python Documentation, Release v0.9dev

But now Individual also has everything it needs to evaluate its own fitness:

>>> ind.evaluate()
836.4453949...

Calling evaluate() also has the side effect of setting the fitness attribute:

>>> ind.fitness
836.4453949...

__init__()

abstract decode(genome, *args, **kwargs)

Parameters
genome – a genome you wish to convert

Returns
the phenotype associated with that genome

IdentityDecoder

class leap_ec.decoder.IdentityDecoder

A decoder that maps a genome to itself. This acts as a ‘direct’ or ‘phenotypic’ encoding: Use this when your
genotype and phenotype are the same thing.

__init__()

decode(genome, *args, **kwargs)

Returns
the input genome.

For example:

>>> import numpy as np
>>> d = IdentityDecoder()
>>> d.decode(np.array([0.5, 0.6, 0.7]))
array([0.5, 0.6, 0.7])

BinaryToIntDecoder

class leap_ec.binary_rep.decoders.BinaryToIntDecoder(*descriptors)
A decoder that converts a Boolean-vector genome into an integer-vector phenome.

__init__(*descriptors)
Constructs a decoder that will convert a binary representation into a corresponding int-value vector.

Parameters
descriptors – is a test_sequence of integer that determine how the binary test_sequence is
to be broken up into chunks for interpretation

2.3. Detailed Explanations 13

LEAP: Library for Evolutionary Algorithms in Python Documentation, Release v0.9dev

Returns
a function for real-value phenome decoding of a test_sequence of binary digits

The segments parameter indicates the number of (genome) bits per (phenome) dimension. For example, if
we construct the decoder

>>> d = BinaryToIntDecoder(4, 3)

then it will look for a genome of length 7, with the first 4 bits mapped to the first phenotypic value, and the
last 3 bits making up the second:

>>> import numpy as np
>>> d.decode(np.array([0,0,0,0,1,1,1]))
array([0, 7])

decode(genome, *args, **kwargs)
Converts a Boolean genome to an integer-vector phenome by interpreting each segment of the genome as
low-endian binary number.

Parameters
genome – a list of 0s and 1s representing a Boolean genome

Returns
a corresponding list of ints representing the integer-vector phenome

For example, a Boolean representation of [1, 12, 5] can be decoded like this:

>>> import numpy as np
>>> d = BinaryToIntDecoder(4, 4, 4)
>>> b = np.array([0,0,0,1, 1, 1, 0, 0, 0, 1, 1, 0])
>>> d.decode(b)
array([1, 12, 6])

BinaryToRealDecoderCommon

class leap_ec.binary_rep.decoders.BinaryToRealDecoderCommon(*segments)
Common implementation for binary to real decoders.

The base classes BinaryToRealDecoder and BinaryToRealGreyDecoder differ by just the underlying binary to
integer decoder. Most all the rest of the binary integer to real-value decoding is the same, hence this class.

__init__(*segments)

Parameters
segments – is a test_sequence of tuples of the form (number of bits, minimum, maximum)
values

Returns
a function for real-value phenome decoding of a test_sequence of binary digits

decode(genome, *args, **kwargs)
Convert a list of binary values into a real-valued vector.

14 Chapter 2. LEAP Concepts

LEAP: Library for Evolutionary Algorithms in Python Documentation, Release v0.9dev

BinaryToRealDecoder

class leap_ec.binary_rep.decoders.BinaryToRealDecoder(*segments)

__init__(*segments)
This returns a function that will convert a binary representation into a corresponding real-value vector.
The segments are a collection of tuples that indicate how many bits per segment, and the corresponding
real-value bounds for that segment.

Parameters
segments – is a test_sequence of tuples of the form (number of bits, minimum, maximum)
values

Returns
a function for real-value phenome decoding of a test_sequence of binary digits

For example, if we construct the decoder then it will look for a genome of length 8, with the first 4 bits
mapped to the first phenotypic value, and the last 4 bits making up the second. The traits have a minimum
value of -5.12 (corresponding to 0000) and a maximum of 5.12 (corresponding to 1111):

>>> import numpy as np
>>> d = BinaryToRealDecoder((4, -5.12, 5.12),(4, -5.12, 5.12))
>>> d.decode(np.array([0, 0, 0, 0, 1, 1, 1, 1]))
array([-5.12, 5.12])

BinaryToIntGreyDecoder

class leap_ec.binary_rep.decoders.BinaryToIntGreyDecoder(*descriptors)
This performs Gray encoding when converting from binary strings.

See also: https://en.wikipedia.org/wiki/Gray_code#Converting_to_and_from_Gray_code

For example, a grey encoded Boolean representation of [1, 8, 4] can be decoded like this:

>>> import numpy as np
>>> d = BinaryToIntGreyDecoder(4, 4, 4)
>>> b = np.array([0,0,0,1, 1, 1, 0, 0, 0, 1, 1, 0])
>>> d.decode(b)
array([1, 8, 4])

__init__(*descriptors)
Constructs a decoder that will convert a binary representation into a corresponding int-value vector.

Parameters
descriptors – is a test_sequence of integer that determine how the binary test_sequence is
to be broken up into chunks for interpretation

Returns
a function for real-value phenome decoding of a test_sequence of binary digits

The segments parameter indicates the number of (genome) bits per (phenome) dimension. For example, if
we construct the decoder

2.3. Detailed Explanations 15

https://en.wikipedia.org/wiki/Gray_code#Converting_to_and_from_Gray_code

LEAP: Library for Evolutionary Algorithms in Python Documentation, Release v0.9dev

>>> d = BinaryToIntDecoder(4, 3)

then it will look for a genome of length 7, with the first 4 bits mapped to the first phenotypic value, and the
last 3 bits making up the second:

>>> import numpy as np
>>> d.decode(np.array([0,0,0,0,1,1,1]))
array([0, 7])

decode(genome, *args, **kwargs)
Converts a Boolean genome to an integer-vector phenome by interpreting each segment of the genome as
low-endian binary number.

Parameters
genome – a list of 0s and 1s representing a Boolean genome

Returns
a corresponding list of ints representing the integer-vector phenome

For example, a Boolean representation of [1, 12, 5] can be decoded like this:

>>> import numpy as np
>>> d = BinaryToIntDecoder(4, 4, 4)
>>> b = np.array([0,0,0,1, 1, 1, 0, 0, 0, 1, 1, 0])
>>> d.decode(b)
array([1, 12, 6])

BinaryToRealGreyDecoder

class leap_ec.binary_rep.decoders.BinaryToRealGreyDecoder(*segments)

__init__(*segments)
This returns a function that will convert a binary representation into a corresponding real-value vector.
The segments are a collection of tuples that indicate how many bits per segment, and the corresponding
real-value bounds for that segment.

Parameters
segments – is a test_sequence of tuples of the form (number of bits, minimum, maximum)
values :return: a function for real-value phenome decoding of a test_sequence of binary digits

For example, if we construct the decoder then it will look for a genome of length 8, with the first 4 bits
mapped to the first phenotypic value, and the last 4 bits making up the second. The traits have a minimum
value of -5.12 (corresponding to 0000) and a maximum of 5.12 (corresponding to 1111):

>>> import numpy as np
>>> d = BinaryToRealGreyDecoder((4, -5.12, 5.12),(4, -5.12, 5.12))
>>> d.decode(np.array([0, 0, 0, 0, 1, 1, 1, 1]))
array([-5.12 , 1.70666667])

16 Chapter 2. LEAP Concepts

LEAP: Library for Evolutionary Algorithms in Python Documentation, Release v0.9dev

2.3.3 Representations

When implementing an EA, one of the first design decisions that a practitioner must make is how to represent their
problem in an individual. In this section we share how to structure individuals to represent a posed solution instance
for a given problem.

Generally, each representation has a specific function, or set of functions, to create genomes for values of that repre-
sentation type. There is sometimes also a decoders tailored to translate genomes into desired values. And, lastly, there
will be a set of pipeline operators specific to that representation.

In summary, representations can have the following:

initializers
These are for creating random genomes of that representation.

decoders
These are for translating genomes to usable values; note not all representations need decoders in that
you can directly use the genome values, and which is typical for real-valued and integer representa-
tions. (Which are a type of _phenotypic_ representation.)

pipeline operators
Most all representations will have pipeline operators that are specific to that type

Binary representations

A common representation for individuals is as a string of binary digits.

Decoders for binary representations.

class leap_ec.binary_rep.decoders.BinaryToIntDecoder(*descriptors)
Bases: Decoder

A decoder that converts a Boolean-vector genome into an integer-vector phenome.

decode(genome, *args, **kwargs)
Converts a Boolean genome to an integer-vector phenome by interpreting each segment of the genome as
low-endian binary number.

Parameters
genome – a list of 0s and 1s representing a Boolean genome

Returns
a corresponding list of ints representing the integer-vector phenome

For example, a Boolean representation of [1, 12, 5] can be decoded like this:

>>> import numpy as np
>>> d = BinaryToIntDecoder(4, 4, 4)
>>> b = np.array([0,0,0,1, 1, 1, 0, 0, 0, 1, 1, 0])
>>> d.decode(b)
array([1, 12, 6])

class leap_ec.binary_rep.decoders.BinaryToIntGreyDecoder(*descriptors)
Bases: BinaryToIntDecoder

This performs Gray encoding when converting from binary strings.

See also: https://en.wikipedia.org/wiki/Gray_code#Converting_to_and_from_Gray_code

For example, a grey encoded Boolean representation of [1, 8, 4] can be decoded like this:

2.3. Detailed Explanations 17

https://en.wikipedia.org/wiki/Gray_code#Converting_to_and_from_Gray_code

LEAP: Library for Evolutionary Algorithms in Python Documentation, Release v0.9dev

>>> import numpy as np
>>> d = BinaryToIntGreyDecoder(4, 4, 4)
>>> b = np.array([0,0,0,1, 1, 1, 0, 0, 0, 1, 1, 0])
>>> d.decode(b)
array([1, 8, 4])

decode(genome, *args, **kwargs)
Converts a Boolean genome to an integer-vector phenome by interpreting each segment of the genome as
low-endian binary number.

Parameters
genome – a list of 0s and 1s representing a Boolean genome

Returns
a corresponding list of ints representing the integer-vector phenome

For example, a Boolean representation of [1, 12, 5] can be decoded like this:

>>> import numpy as np
>>> d = BinaryToIntDecoder(4, 4, 4)
>>> b = np.array([0,0,0,1, 1, 1, 0, 0, 0, 1, 1, 0])
>>> d.decode(b)
array([1, 12, 6])

class leap_ec.binary_rep.decoders.BinaryToRealDecoder(*segments)
Bases: BinaryToRealDecoderCommon

class leap_ec.binary_rep.decoders.BinaryToRealDecoderCommon(*segments)
Bases: Decoder

Common implementation for binary to real decoders.

The base classes BinaryToRealDecoder and BinaryToRealGreyDecoder differ by just the underlying binary to
integer decoder. Most all the rest of the binary integer to real-value decoding is the same, hence this class.

decode(genome, *args, **kwargs)
Convert a list of binary values into a real-valued vector.

class leap_ec.binary_rep.decoders.BinaryToRealGreyDecoder(*segments)
Bases: BinaryToRealDecoderCommon

Used to initialize binary sequences

leap_ec.binary_rep.initializers.create_binary_sequence(length)
A closure for initializing a binary sequences for binary genomes.

Parameters
length – how many genes?

Returns
a function that, when called, generates a binary vector of given length

E.g., can be used for Individual.create_population

>>> from leap_ec.decoder import IdentityDecoder
>>> from . problems import MaxOnes
>>> population = Individual.create_population(10, create_binary_sequence(length=10),
... decoder=IdentityDecoder(),
... problem=MaxOnes())

18 Chapter 2. LEAP Concepts

LEAP: Library for Evolutionary Algorithms in Python Documentation, Release v0.9dev

Binary representation specific pipeline operators.

leap_ec.binary_rep.ops.genome_mutate_bitflip(genome: ndarray = '__no__default__',
expected_num_mutations: float = None, probability: float
= None)→ ndarray

Perform bitflip mutation on a particular genome.

This function can be used by more complex operators to mutate a full population (as in mutate_bitflip), to work
with genome segments (as in leap_ec.segmented.ops.apply_mutation), etc. This way we don’t have to copy-and-
paste the same code for related operators.

Parameters
• genome – of binary digits that we will be mutating

• expected_num_mutations – on average how many mutations are we expecting?

Returns
mutated genome

leap_ec.binary_rep.ops.mutate_bitflip(next_individual: Iterator = '__no__default__',
expected_num_mutations: float = None, probability: float = None)
→ Iterator

Perform bit-flip mutation on each individual in an iterator (population).

This assumes that the genomes have a binary representation.

>>> from leap_ec.individual import Individual
>>> from leap_ec.binary_rep.ops import mutate_bitflip
>>> import numpy as np

>>> original = Individual(np.array([1, 1]))
>>> op = mutate_bitflip(expected_num_mutations=1)
>>> pop = iter([original])
>>> mutated = next(op(pop))

Parameters
• next_individual – to be mutated

• expected_num_mutations – on average how many mutations done (specificy either this
or probability, but not both)

• probability – the probability of mutating any given gene (specificy either this or ex-
pected_num_mutations, but not both)

Returns
mutated individual

leap_ec.binary_rep.ops.random()→ x in the interval [0, 1).

2.3. Detailed Explanations 19

LEAP: Library for Evolutionary Algorithms in Python Documentation, Release v0.9dev

Real-valued representations

Another common representation is a vector of real-values.

Initializers for real values.

leap_ec.real_rep.initializers.create_real_vector(bounds)
A closure for initializing lists of real numbers for real-valued genomes, sampled from a uniform distribution.

Having a closure allows us to just call the returned function N times in Individual.create_population().

TODO Allow either a single tuple or a test_sequence of tuples for bounds. —Siggy

Parameters
bounds – a list of (min, max) values bounding the uniform sampline of each element

Returns
A function that, when called, generates a random genome.

E.g., can be used for Individual.create_population()

>>> from leap_ec.decoder import IdentityDecoder
>>> from . problems import SpheroidProblem
>>> bounds = [(0, 1), (0, 1), (-1, 100)]
>>> population = Individual.create_population(10, create_real_vector(bounds),
... decoder=IdentityDecoder(),
... problem=SpheroidProblem())

Pipeline operators for real-valued representations

leap_ec.real_rep.ops.apply_hard_bounds(genome, hard_bounds)
A helper that ensures that every gene is contained within the given bounds.

Parameters
• genome – list of values to apply bounds to.

• hard_bounds – if a (low, high) tuple, the same bounds will be used for every gene. If a list
of tuples is given, then the ith bounds will be applied to the ith gene.

Both sides of the range are inclusive:

>>> genome = np.array([0, 10, 20, 30, 40, 50])
>>> apply_hard_bounds(genome, hard_bounds=(20, 40))
array([20, 20, 20, 30, 40, 40])

Different bounds can be used for each locus by passing in a list of tuples:

>>> bounds= [(0, 1), (0, 1), (50, 100), (50, 100), (0, 100), (0, 10)]
>>> apply_hard_bounds(genome, hard_bounds=bounds)
array([0, 1, 50, 50, 40, 10])

leap_ec.real_rep.ops.genome_mutate_gaussian(genome='__no__default__', std: float = '__no__default__',
expected_num_mutations='__no__default__', bounds:
Tuple[float, float] = (-inf, inf), transform_slope: float = 1.0,
transform_intercept: float = 0.0)

Perform Gaussian mutation directly on real-valued genes (rather than on an Individual).

This used to be inside mutate_gaussian, but was moved outside it so that leap_ec.segmented.ops.apply_mutation
could directly use this function, thus saving us from doing a copy-n-paste of the same code to the segmented
sub-package.

20 Chapter 2. LEAP Concepts

LEAP: Library for Evolutionary Algorithms in Python Documentation, Release v0.9dev

Parameters
• genome – of real-valued numbers that will potentially be mutated

• std – the mutation width—either a single float that will be used for all genes, or a list of
floats specifying the mutation width for each gene individually.

• expected_num_mutations – on average how many mutations are expected

Returns
mutated genome

leap_ec.real_rep.ops.mutate_gaussian(next_individual: Iterator = '__no__default__',
std='__no__default__', expected_num_mutations: Union[int, str] =
None, bounds=(-inf, inf), transform_slope: float = 1.0,
transform_intercept: float = 0.0)→ Iterator

Mutate and return an Individual with a real-valued representation.

This operators on an iterator of Individuals:

>>> from leap_ec.individual import Individual
>>> from leap_ec.real_rep.ops import mutate_gaussian
>>> import numpy as np
>>> pop = iter([Individual(np.array([1.0, 0.0]))])

Mutation can either use the same parameters for all genes:

>>> op = mutate_gaussian(std=1.0, expected_num_mutations='isotropic', bounds=(-5,␣
→˓5))
>>> mutated = next(op(pop))

Or we can specify the std and bounds independently for each gene:

>>> pop = iter([Individual(np.array([1.0, 0.0]))])
>>> op = mutate_gaussian(std=[0.5, 1.0],
... expected_num_mutations='isotropic',
... bounds=[(-1, 1), (-10, 10)]
...)
>>> mutated = next(op(pop))

Parameters
• next_individual – to be mutated

• std – standard deviation to be equally applied to all individuals; this can be a scalar value
or a “shadow vector” of standard deviations

• expected_num_mutations – if an int, the expected number of mutations per individual,
on average. If ‘isotropic’, all genes will be mutated.

• bounds – to clip for mutations; defaults to (- ∞, ∞)

Returns
a generator of mutated individuals.

2.3. Detailed Explanations 21

LEAP: Library for Evolutionary Algorithms in Python Documentation, Release v0.9dev

Integer representations

A vector of all integer values is also a common representation.

Initializers for integer-valued genomes.

leap_ec.int_rep.initializers.create_int_vector(bounds)
A closure for initializing lists of integers for int-vector genomes, sampled from a uniform distribution.

Having a closure allows us to just call the returned function N times in Individual.create_population().

TODO Allow either a single tuple or a sequence of tuples for bounds. —Siggy

Parameters
bounds – a list of (min, max) values bounding the uniform sampline of each element

Returns
A function that, when called, generates a random genome.

>>> from leap_ec.decoder import IdentityDecoder
>>> from leap_ec.real_rep.problems import SpheroidProblem
>>> bounds = [(0, 1), (-5, 5), (-1, 100)]
>>> population = Individual.create_population(10, create_int_vector(bounds),
... decoder=IdentityDecoder(),
... problem=SpheroidProblem())

Evolutionary operators for maniuplating integer-vector genomes.

leap_ec.int_rep.ops.genome_mutate_binomial(std='__no__default__', bounds: list = '__no__default__',
expected_num_mutations: float = None, probability: float =
None, n: int = 10000)

Perform additive binomial mutation of a particular genome.

>>> import numpy as np
>>> genome = np.array([42, 12])
>>> bounds = [(0,50), (-10,20)]
>>> genome_op = genome_mutate_binomial(std=0.5, bounds=bounds,
... expected_num_mutations=1)
>>> new_genome = genome_op(genome)

leap_ec.int_rep.ops.individual_mutate_randint(genome='__no__default__', bounds: list =
'__no__default__', expected_num_mutations=None,
probability=None)

Perform random-integer mutation on a particular genome.

>>> import numpy as np
>>> genome = np.array([42, 12])
>>> bounds = [(0,50), (-10,20)]
>>> new_genome = individual_mutate_randint(genome, bounds, expected_num_mutations=1)

Parameters
• genome – test_sequence of integers to be mutated

• bounds – test_sequence of bounds tuples; e.g., [(1,2),(3,4)]

• expected_num_mutations – on average how many mutations done (specificy either this
or probability, but not both)

22 Chapter 2. LEAP Concepts

LEAP: Library for Evolutionary Algorithms in Python Documentation, Release v0.9dev

• probability – the probability of mutating any given gene (specificy either this or ex-
pected_num_mutations, but not both)

leap_ec.int_rep.ops.mutate_binomial(next_individual: Iterator = '__no__default__', std: float =
'__no__default__', bounds: list = '__no__default__',
expected_num_mutations: float = None, probability: float = None, n:
int = 10000)→ Iterator

Mutate genes by adding an integer offset sampled from a binomial distribution centered on the current gene value.

This is very similar to applying additive Gaussian mutation and then rounding to the nearest integer, but does so
in a way that is more natural for integer-valued genes.

Parameters
• std (float) – standard deviation of the binomial distribution

• bounds – list of pairs of hard bounds to clip each gene by (to prevent mutation from carrying
a gene value outside an allowed range)

• expected_num_mutations – on average how many mutations done (specificy either this
or probability, but not both)

• probability – the probability of mutating any given gene (specificy either this or ex-
pected_num_mutations, but not both)

• n (int) – the number of “coin flips” to use in the binomial process (defaults to 10000)

Usage example:

>>> from leap_ec.individual import Individual
>>> from leap_ec.int_rep.ops import mutate_binomial
>>> import numpy as np
>>> population = iter([Individual(np.array([1, 1]))])
>>> operator = mutate_binomial(std=2.5,
... bounds=[(0, 10), (0, 10)],
... expected_num_mutations=1)
>>> mutated = next(operator(population))

The std parameter can also be given as a list with a value to use for each gene locus:

>>> population = iter([Individual(np.array([1, 1]))])
>>> operator = mutate_binomial(std=[2.5, 3.0],
... bounds=[(0, 10), (0, 10)],
... expected_num_mutations=1)
>>> mutated = next(operator(population))

Note: The binomial distribution is defined by two parameters, n and p. Here we simplify the interface by asking
instead for an std parameter, and fixing a high value of n by default. The value of p needed to obtain the given
std is computed for you internally.

As the plots below illustrate, the binomial distribution is approximated by a Gaussian. For high n and large
standard deviations, the two are effectively equivalent. But when the standard deviation (and thus binomial p
parameter) is relatively small, the approximation becomes less accurate, and the binomial differs somewhat from
a Gaussian.

2.3. Detailed Explanations 23

LEAP: Library for Evolutionary Algorithms in Python Documentation, Release v0.9dev

10 5 0 5 10

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35 Binomial(n=15)
Binomial(n=10000)
Gaussian

leap_ec.int_rep.ops.mutate_randint(next_individual: Iterator = '__no__default__',
bounds='__no__default__', expected_num_mutations=None,
probability=None)→ Iterator

Perform randint mutation on each individual in an iterator (population).

This operator replaces randomly selected genes with an integer samples from a uniform distribution.

Parameters
• bounds – test_sequence of bounds tuples; e.g., [(1,2),(3,4)]

• expected_num_mutations – on average how many mutations done (specificy either this
or probability, but not both)

• probability – the probability of mutating any given gene (specificy either this or ex-
pected_num_mutations, but not both)

>>> from leap_ec.individual import Individual
>>> from leap_ec.int_rep.ops import mutate_randint
>>> import numpy as np

>>> population = iter([Individual(np.array([1, 1]))])
>>> operator = mutate_randint(expected_num_mutations=1, bounds=[(0, 10), (0, 10)])
>>> mutated = next(operator(population))

24 Chapter 2. LEAP Concepts

LEAP: Library for Evolutionary Algorithms in Python Documentation, Release v0.9dev

Segmented representations

Segmented representations are a wrapper around another, arbitrary representation, such as a binary, real-valued, or
integer representation. Segmented representations allow for sequences of value “chunks”. For example, a Pitt Approach
could be implemented using this representation where each segment represents a single rule. Another example would
be each segment represents associated hyper-parameters for a convolutional neural network layer.

Used to decode segments

class leap_ec.segmented_rep.decoders.SegmentedDecoder(segment_decoder)
Bases: Decoder

For decoding LEAP segmented representations

>>> from leap_ec.binary_rep.decoders import BinaryToIntDecoder

This example presumes that each segment has five bits, the first to map to an integer and the remaining three to
a different integer.

>>> import numpy as np
>>> decoder = SegmentedDecoder(BinaryToIntDecoder(2,3))
>>> genome = np.array([[1, 0, 1, 0, 1],
... [0, 0, 1, 1, 1],
... [1, 0, 0, 0, 1]])
>>> vals = decoder.decode(genome)
>>> assert np.all(vals == np.array([[2, 5], [0, 7], [2, 1]]))

decode(genome, *args, **kwargs)

For decoding genome which is a list of lists, or a segmented representation.

Parameters
• genome (will be a list of segments (or lists)) – for a given individual

• args (list) – optional args

• kwargs (dict) – optional keyword args

Returns
a list of list of values decoded from genome

Return type
list

Used to initialize segments

leap_ec.segmented_rep.initializers.create_segmented_sequence(length, seq_initializer)
Create a segmented test_sequence

A segment is a list of lists. seq_initializer is used to create length individual segments, which allows for the using
any of the pre-supplied initializers for a regular genomic test_sequence, or for making your own.

length denotes how many segments to generate. If it’s an integer, then we will create length segments. However,
if it’s a function that draws from a random distribution that returns an int, we will, instead, use that to calculate
the number of segments to generate.

2.3. Detailed Explanations 25

LEAP: Library for Evolutionary Algorithms in Python Documentation, Release v0.9dev

>>> from leap_ec.binary_rep.initializers import create_binary_sequence
>>> segmented_initializer = create_segmented_sequence(3, create_binary_sequence(3))
>>> segments = segmented_initializer()
>>> assert len(segments) == 3

Parameters
• length (int or Callable) – How many segments?

• seq_initializer (Callable) – initializer for creating individual sequences

Returns
function that returns a list of segmented

Return type
Callable

Segmented representation specific pipeline operators.

leap_ec.segmented_rep.ops.add_segment(next_individual: Iterator = '__no__default__', seq_initializer:
Callable = '__no__default__', probability: float =
'__no__default__', append: bool = False)→ Iterator

Possibly add a segment to the given individual

New segments can be always appended, or randomly inserted within the individual’s genome.

TODO add a parameter for accepting a function that will yield a distribution for the number of segments to be
randomly inserted.

>>> from leap_ec.individual import Individual
>>> from leap_ec.binary_rep.initializers import create_binary_sequence
>>> import numpy as np
>>> original = Individual([np.array([0, 0]), np.array([1, 1])])
>>> mutated = next(add_segment(iter([original]),
... seq_initializer=create_binary_sequence(2),
... probability=1.0))

Parameters
• next_individual – to possibly add a segment

• seq_initializer – callable for initializing any new segments

• probability – likelihood of adding a segment

• append – if True, always append any new segments

Returns
yielded individual with a possible new segment

leap_ec.segmented_rep.ops.apply_mutation(next_individual: Iterator = '__no__default__', mutator:
Callable[[list, float], list] = '__no__default__')→ Iterator

This expects next_individual to have a segmented representation; i.e., a test_sequence of sequences. mutator
will be applied separately to each sub-test_sequence.

>>> from leap_ec.binary_rep.ops import genome_mutate_bitflip
>>> mutation_op = apply_mutation(
... mutator=genome_mutate_bitflip(

(continues on next page)

26 Chapter 2. LEAP Concepts

LEAP: Library for Evolutionary Algorithms in Python Documentation, Release v0.9dev

(continued from previous page)

... expected_num_mutations=0.5

...))
>>> import numpy as np

>>> from leap_ec.individual import Individual
>>> original = Individual(np.array([[0, 0], [1, 1]]))
>>> mutated = next(mutation_op(iter([original])))

Parameters
• next_individual – to possibly mutate

• mutator – function to be applied to each segment in the individual’s genome; first argument
is a segment, the second the expected probability of mutating each segment element.

Returns
yielded mutated individual

leap_ec.segmented_rep.ops.copy_segment(next_individual: Iterator = '__no__default__', probability: float =
'__no__default__', append: bool = False)→ Iterator

with a given probability, randomly select and copy a segment

>>> from leap_ec.individual import Individual
>>> import numpy as np
>>> original = Individual([np.array([0, 0])])
>>> mutated = next(copy_segment(iter([original]), probability=1.0))
>>> assert np.all(mutated.genome[0] == [0, 0]) and np.all(mutated.
→˓genome[1] == [0, 0])

param next_individual
to have a segment possibly removed

param probability
likelihood of doing this

param append
if True, always append any new segments

returns
the next individual

leap_ec.segmented_rep.ops.remove_segment(next_individual: Iterator = '__no__default__', probability:
float = '__no__default__')→ Iterator

for some chance, remove a segment

Nothing happens if the individual has a single segment; i.e., there is no chance for an empty individual
to be returned.

>>> from leap_ec.individual import Individual
>>> import numpy as np
>>> original = Individual([np.array([0, 0]), np.array([1, 1])])
>>> mutated = next(remove_segment(iter([original]), probability=1.0))
>>> assert np.all(mutated.genome[0] == [0, 0]) or np.all(mutated.
→˓genome[0] == [1, 1])

2.3. Detailed Explanations 27

LEAP: Library for Evolutionary Algorithms in Python Documentation, Release v0.9dev

param next_individual
to have a segment possibly removed

param probability
likelihood of removing a segment

returns
the next individual

leap_ec.segmented_rep.ops.segmented_mutate(next_individual: Iterator = '__no__default__',
mutator_functions: list = '__no__default__')

A mutation operator that applies a different mutation operator to each segment of a segmented genome.

Mixed representations

There is currently no explicit support for mixed representations, but there are plans to implement such at some point.
There are a few strategies for implementing mixed values:

• use a binary representation with an associated Decoder that decodes values into desired target value formats,
such as sequences that are a blend of integers, floating point, and categorical variables

• use a floating point representation that has an associated decoder for mapping certain floating point values to
integer or categorical values; an associated mutation function may be necessary to implement pertubations that
make sense for individual genes

• likewise use an integer representation with tailored associated decoders and mutators to decode and change values
in a bespoke way

Representation convenience class

Since the notion of a representation includes how individuals are created, how they’re decoded, and are bound to
a particular class for an individual, the class leap_ec.representation.Representation was created to bundle
those together. By default, the class for individual is leap_ec.individual.Individual, but can of course be any
of its subclasses.

The leap_ec.representation.Representation is used in leap_ec.algorithm.generational_ea. In the fu-
ture this may become a formal python dataclass and be more integrated into LEAP in other functions.

A Representation is a simple data structure that wraps the components needed to define, initialize, and decode individ-
uals.

This just serves as some syntactic sugar when we are specifying algorithms—so that representation-related components
are grouped together and clearly labeled Representation.

class leap_ec.representation.Representation(initialize, decoder=IdentityDecoder(),
individual_cls=<class 'leap_ec.individual.Individual'>)

Bases: object

Syntactic sugar for some of the monolithic functions that conveniently combines a decoder, initializer, and an
Individual class since those always work in tandem, but can still be loosely coupled.

create_individual(problem)

Make a single individual.

create_population(pop_size, problem)

make a new population

Parameters

28 Chapter 2. LEAP Concepts

LEAP: Library for Evolutionary Algorithms in Python Documentation, Release v0.9dev

• pop_size – how many individuals should be in the population

• problem – to be solved

Returns
a population of individual_cls individuals

2.3.4 Problems

This section covers Problem classes in more detail.

Class Summary

Fig. 2.5: The `Problem` abstract-base class This class diagram shows the detail for Problem, which is an abstract
base class (ABC). It has three abstract methods that must be over-ridden by subclasses. evaluate() takes a phenome
from an individual and compute a fitness from that. worse_than() and equivalent() compare fitnesses from two different
individuals and, as the name suggests, respectively returns the worst of the two or the equivalent within the Problem
context.

As shown in Fig. 2.5, the Problem abstract-base class has three abstract methods. evaluate() takes a phenome that
was decode()d from an Individual’s genome, and returns a value denoting the quality, or fitness, of that individual.
Problems are also used to compare the fitnesses between Individuals. worse_than() returns true if the first individual
is less fit than the second. Similarly, equivalent() is used to determine if two given fitnesses are effectively the same.

Class API

Defines the abstract-base classes Problem, ScalarProblem, and FunctionProblem.

class leap_ec.problem.AlternatingProblem(problems, modulo, context={'leap': {'distrib': {'non_viable':
0}, 'generation': 20}})

equivalent(first_fitness, second_fitness)

evaluate(phenome)
Evaluate the given phenome.

Practitioners must over-ride this member function.

Note that by default the individual comparison operators assume a maximization problem; if this is a min-
imization problem, then just negate the value when returning the fitness.

Parameters
phenome – the phenome to evaluate (this will not be modified)

Returns
the fitness value

get_current_problem()

worse_than(first_fitness, second_fitness)

2.3. Detailed Explanations 29

LEAP: Library for Evolutionary Algorithms in Python Documentation, Release v0.9dev

class leap_ec.problem.AverageFitnessProblem(wrapped_problem, n: int)
Problem wrapper that copies each genome n times, evaluates them, and averages the results back together to
produce a mean-fitness estimate.

This is a common strategy for approaching noisy fitness functions, to make it easier for an optimization algorithm
to follow a gradient.

>>> from leap_ec.real_rep.problems import NoisyQuarticProblem
>>> p = AverageFitnessProblem(
... wrapped_problem = NoisyQuarticProblem(),
... n = 20)
>>> x = [1, 1, 1, 1]
>>> y = p.evaluate(x)
>>> print(f"Fitness: {y}") # The mean of this will be approximately 10
Fitness: ...

equivalent(first_fitness, second_fitness)

evaluate(phenome)
Evaluates the wrapped function n times sequentially and returns the mean.

evaluate_multiple(phenomes: list)
Evaluate a collections of phenomes by creating n jobs for each phenome, sending all the jobs to the wrapped
evaluate_multiple() function, and then averaging the n results for each phenome into a list of results.

worse_than(first_fitness, second_fitness)

class leap_ec.problem.ConstantProblem(maximize=False, c=1.0)
A flat landscape, where all phenotypes have the same fitness.

This is sometimes useful for sanity checks or as a control in certain kinds of research.

𝑓(𝑥⃗) = 𝑐

Parameters
c (float) – the fitness value to return for any input.

from leap_ec.problem import ConstantProblem
from leap_ec.real_rep.problems import plot_2d_problem
bounds = ConstantProblem.bounds
plot_2d_problem(ConstantProblem(), xlim=bounds, ylim=bounds, granularity=0.025)

bounds = (-1.0, 1.0)

evaluate(phenome, *args, **kwargs)
Return a contant value for any input phenome:

>>> phenome = [0.5, 0.8, 1.5]
>>> ConstantProblem().evaluate(phenome)
1.0

>>> ConstantProblem(c=500.0).evaluate('foo bar')
500.0

Parameters
phenome – phenome to be evaluated

30 Chapter 2. LEAP Concepts

LEAP: Library for Evolutionary Algorithms in Python Documentation, Release v0.9dev

1.0
0.5

0.0
0.5

1.0 1.0
0.5

0.0
0.5

1.0

0.96
0.98
1.00

1.02

1.04

2.3. Detailed Explanations 31

LEAP: Library for Evolutionary Algorithms in Python Documentation, Release v0.9dev

Returns
1.0, or the constant defined in the constructor

class leap_ec.problem.CooperativeProblem(wrapped_problem, num_trials: int, collaborator_selector,
combined_decoder: ~leap_ec.decoder.Decoder =
IdentityDecoder(), log_stream=None,
combine_genomes=<function
CooperativeProblem.<lambda>>, context={'leap': {'distrib':
{'non_viable': 0}, 'generation': 20}})

A Problem that implements cooperative coevolution. This provides a fitness function that takes partial solu-
tions as input (i.e. from one of the subpopulations of the cooperative algorithm), and evaluates their fitness by
combining them with other individuals in the population.

You can think of a CooperativeProblem as defining a fitness function for a subpopulation in a multi-population
model, where the fitness function that is computed is itself a function of the state of the other subpopulations:

..math

mbox{fitness} = f_{p_i}(vec{mathbf{x}}, mathcal{P} \ p_i)

This class works by wrapping another fitness function, which is defined over complete solutions, and by taking a
selection operator (which is used to select “collaborators” from other subpopulations to form complete solutions):

>>> from leap_ec import ops
>>> from leap_ec.real_rep.problems import SpheroidProblem
>>> complete_problem = SpheroidProblem()
>>> problem = CooperativeProblem(
... wrapped_problem = SpheroidProblem(),
... num_trials = 3,
... collaborator_selector = ops.random_selection)

equivalent(first_fitness, second_fitness)

evaluate(phenome, *args, **kwargs)
Evaluate the given phenome.

Practitioners must over-ride this member function.

Note that by default the individual comparison operators assume a maximization problem; if this is a min-
imization problem, then just negate the value when returning the fitness.

Parameters
phenome – the phenome to evaluate (this will not be modified)

Returns
the fitness value

evaluate_multiple(phenomes, individuals)
Evaluate multiple phenomes all at once, returning a list of fitness values.

By default this just calls self.evaluate() multiple times. Override this if you need to, say, send a group of
individuals off to parallel

worse_than(first_fitness, second_fitness)

class leap_ec.problem.ExternalProcessProblem(command: str, maximize: bool, args: Optional[list] =
None)

Evaluate individuals by launching an external program, writing phenomes to its stdin as CSV rows, and reading
back fitness values from its stdout.

32 Chapter 2. LEAP Concepts

LEAP: Library for Evolutionary Algorithms in Python Documentation, Release v0.9dev

Assumes that individuals are represented with list phenomes with elements that can be cast to strings.

evaluate(phenome)
Evaluate the given phenome.

Practitioners must over-ride this member function.

Note that by default the individual comparison operators assume a maximization problem; if this is a min-
imization problem, then just negate the value when returning the fitness.

Parameters
phenome – the phenome to evaluate (this will not be modified)

Returns
the fitness value

evaluate_multiple(phenomes, *args, **kwargs)
Evaluate multiple phenomes all at once, returning a list of fitness values.

By default this just calls self.evaluate() multiple times. Override this if you need to, say, send a group of
individuals off to parallel

class leap_ec.problem.FitnessOffsetProblem(problem, fitness_offset, maximize=None)
Takes an existing function and adds a constant value to it output.

𝑓 ′(x) = 𝑓(x) + 𝑐

Parameters
• problem – the original problem to wrape

• fitness_offset (float) – the scalar constant to add

evaluate(phenome)
Evaluates the phenome’s fitness in the wrapped function, then adds the constant.

For example, here the original fitness function returns 5.0, but we subtract 3.5 from it so that it yields 1.5.

>>> original = ConstantProblem(c=5.0)
>>> problem = FitnessOffsetProblem(original, fitness_offset=-3.5)
>>> problem.evaluate([0, 1, 2])
1.5

class leap_ec.problem.FunctionProblem(fitness_function, maximize)
A convenience wrapper that takes a vanilla function that returns scalar fitness values and makes it usable as an
objective function.

evaluate(phenome, *args, **kwargs)
Evaluate the given phenome.

Practitioners must over-ride this member function.

Note that by default the individual comparison operators assume a maximization problem; if this is a min-
imization problem, then just negate the value when returning the fitness.

Parameters
phenome – the phenome to evaluate (this will not be modified)

Returns
the fitness value

2.3. Detailed Explanations 33

LEAP: Library for Evolutionary Algorithms in Python Documentation, Release v0.9dev

class leap_ec.problem.Problem

Abstract Base Class used to define problem definitions.

A Problem is in charge of two major parts of an EA’s behavior:

1. Fitness evaluation (the evaluate() method)

2. Fitness comparision (the worse_than() and equivalent() methods)

abstract equivalent(first_fitness, second_fitness)

abstract evaluate(phenome, *args, **kwargs)
Evaluate the given phenome.

Practitioners must over-ride this member function.

Note that by default the individual comparison operators assume a maximization problem; if this is a min-
imization problem, then just negate the value when returning the fitness.

Parameters
phenome – the phenome to evaluate (this will not be modified)

Returns
the fitness value

evaluate_multiple(phenomes)
Evaluate multiple phenomes all at once, returning a list of fitness values.

By default this just calls self.evaluate() multiple times. Override this if you need to, say, send a group of
individuals off to parallel

abstract worse_than(first_fitness, second_fitness)

class leap_ec.problem.ScalarProblem(maximize)
A problem that compares individuals based on their scalar fitness values.

Inherit from this class and implement the evaluate() method to implement an objective function that returns a
single real-valued fitness value.

equivalent(first_fitness, second_fitness)
Used in Individual.__eq__().

By default returns first.fitness== second.fitness. Please over-ride if this does not hold for your problem.

Returns
true if the first individual is equal to the second

worse_than(first_fitness, second_fitness)
Used in Individual.__lt__().

By default returns first_fitness < second_fitness if a maximization problem, else first_fitness > sec-
ond_fitness if a minimization problem. Please over-ride if this does not hold for your problem.

Returns
true if the first individual is less fit than the second

leap_ec.problem.concat_combine(collaborators)
Combine a list of individuals by concatenating their genomes.

This is a convenience function intended for use with CooperativeProblem.

34 Chapter 2. LEAP Concepts

LEAP: Library for Evolutionary Algorithms in Python Documentation, Release v0.9dev

Binary Problems API

A set of standard EA problems that rely on a binary-representation

class leap_ec.binary_rep.problems.DeceptiveTrap(maximize=True)
A simple bi-modal function whose global optimum is the Boolean vector of all 1’s, but in which fitness decreases
as the number of 1’s in the vector increases—giving it a local optimum of [0, . . . , 0] with a very wide basin of
attraction.

evaluate(phenome)

>>> import numpy as np
>>> p = DeceptiveTrap()

The trap function has a global maximum when the number of one’s is maximized:

>>> p.evaluate(np.array([1, 1, 1, 1, 1, 1, 1, 1, 1, 1]))
10

It’s minimized when we have just one zero: >>> p.evaluate(np.array([1, 1, 1, 1, 0, 1, 1, 1, 1, 1])) 0

And has a local optimum when we have no ones at all: >>> p.evaluate(np.array([0, 0, 0, 0, 0, 0, 0, 0, 0, 0]))
9

class leap_ec.binary_rep.problems.ImageProblem(path, maximize=True, size=(100, 100))
A variation on max_ones that uses an external image file to define a binary target pattern.

evaluate(phenome)
Evaluate the given phenome.

Practitioners must over-ride this member function.

Note that by default the individual comparison operators assume a maximization problem; if this is a min-
imization problem, then just negate the value when returning the fitness.

Parameters
phenome – the phenome to evaluate (this will not be modified)

Returns
the fitness value

class leap_ec.binary_rep.problems.LeadingOnes(target_string=None, maximize=True)
Implementation of the classic leading-ones problem, where the individuals are represented by a bit vector.

By default, the number of consecutve 1’s starting from the beginning of the phenome are maximized:

>>> p = LeadingOnes()

But an optional target string can also be specified, in which case the number of matches to the target are maxi-
mized:

>>> import numpy as np
>>> p = LeadingOnes(target_string=np.array([1, 1, 0, 1, 1, 0, 0, 0 ,0]))

evaluate(phenome)
By default this counts the number of consecutive 1’s at the start of the string:

2.3. Detailed Explanations 35

LEAP: Library for Evolutionary Algorithms in Python Documentation, Release v0.9dev

>>> import numpy as np
>>> p = LeadingOnes()
>>> p.evaluate(np.array([1, 1, 1, 1, 0, 1, 0, 1, 1]))
4

Or, if a target string was given, we count matches:

>>> p = LeadingOnes(target_string=np.array([1, 1, 0, 1, 1, 0, 0, 0 ,0]))
>>> p.evaluate(np.array([1, 1, 1, 1, 0, 1, 0, 1, 1]))
2

class leap_ec.binary_rep.problems.MaxOnes(target_string=None, maximize=True)
Implementation of the classic max-ones problem, where the individuals are represented by a bit vector.

By default, the number of 1’s in the phenome are maximized.

>>> p = MaxOnes()

But an optional target string can also be specified, in which case the number of matches to the target are maxi-
mized:

>>> import numpy as np
>>> p = MaxOnes(target_string=np.array([1, 1, 1, 1, 1, 0, 0, 0 ,0]))

evaluate(phenome)
By default this counts the number of 1’s:

>>> from leap_ec.individual import Individual
>>> import numpy as np
>>> p = MaxOnes()
>>> p.evaluate(np.array([0, 0, 1, 1, 0, 1, 0, 1, 1]))
5

Or, if a target string was given, we count matches:

>>> from leap_ec.individual import Individual
>>> import numpy as np
>>> p = MaxOnes(target_string=np.array([1, 1, 1, 1, 1, 0, 0, 0 ,0]))
>>> p.evaluate(np.array([0, 0, 1, 1, 0, 1, 0, 1, 1]))
3

class leap_ec.binary_rep.problems.TwoMax(maximize=True)
A simple bi-modal function that returns the number of 1’s if there are more 1’s than 0’s, else the number of 0’s.

Also known as the “Twin-Peaks” problem.

evaluate(phenome)

>>> import numpy as np
>>> p = TwoMax()

The TwoMax problems returns the number over 1’s if they are in the majority:

>>> p.evaluate(np.array([1, 1, 1, 1, 1, 1, 1, 0, 0, 0]))
7

36 Chapter 2. LEAP Concepts

LEAP: Library for Evolutionary Algorithms in Python Documentation, Release v0.9dev

Else the number of zeros: >>> p.evaluate(np.array([0, 0, 0, 1, 0, 0, 0, 1, 1, 1])) 6

Real-value Problems API

This module contains a variety of classic real-valued optimization problems that frequently occur in research bench-
marks.

It also contains helpers for translating, rotating, and visualizing them.

class leap_ec.real_rep.problems.AckleyProblem(a=20, b=0.2, c=6.283185307179586, maximize=False)

𝑓(x) = −𝑎 exp

⎛⎝−𝑏

⎯⎸⎸⎷1

𝑑

𝑑∑︁
𝑖=1

𝑥2
𝑖

⎞⎠− exp

(︃
1

𝑑

𝑑∑︁
𝑖=1

cos(𝑐𝑥𝑖)

)︃
+ 𝑎+ exp(1)

Parameters
• a (float) – depth parameter for the bowl-shaped macrostructure

• b (float) – exponential scale parameter for the bowl

• c (float) – wavenumber (frequency) of the cosine pattern of local optima

• maximize (bool) – the function is maximized if True, else minimized.

from leap_ec.real_rep.problems import AckleyProblem, plot_2d_problem
import math
problem = AckleyProblem(a=20, b=0.2, c=2*math.pi)
bounds = AckleyProblem.bounds # Contains traditional bounds
plot_2d_problem(problem, xlim=bounds, ylim=bounds, granularity=0.25)

bounds = [-32.768, 32.768]

evaluate(phenome)
Computes the function value from a real-valued phenome.

Parameters
phenome – real-valued vector to be evaluated

Returns
its fitness.

class leap_ec.real_rep.problems.CosineFamilyProblem(alpha, global_optima_counts,
local_optima_counts, maximize=False)

A configurable multi-modal function based on combinations of cosines, taken from the problem generators pro-
posed by Rönkkönen et al. [RonkkonenLKL08].

𝑓cos(x) =

∑︀𝑛
𝑖=1 − cos((𝐺𝑖 − 1)2𝜋𝑥𝑖)− 𝛼 · cos((𝐺𝑖 − 1)2𝜋𝐿𝑖𝑥𝑖)

2𝑛

where 𝐺𝑖 and 𝐿𝑖 are parameters that indicate the number of global and local optima, respectively, in the ith
dimension.

Parameters
• alpha (float) – parameter that controls the depth of the local optima.

• global_optima_counts ([int]) – list of integers indicating the number of global optima
for each dimension.

2.3. Detailed Explanations 37

LEAP: Library for Evolutionary Algorithms in Python Documentation, Release v0.9dev

30 20 10 0 10 20 30 30
20

10
0

10
20

30

5

10

15

20

38 Chapter 2. LEAP Concepts

LEAP: Library for Evolutionary Algorithms in Python Documentation, Release v0.9dev

• local_optima_counts ([int]) – list of integers indicated the number of local optima for
each dimension.

• maximize – the function is maximized if True, else minimized.

from leap_ec.real_rep.problems import CosineFamilyProblem, plot_2d_problem
problem = CosineFamilyProblem(alpha=1.0, global_optima_counts=[2, 2], local_optima_
→˓counts=[2, 2])
bounds = CosineFamilyProblem.bounds # Contains traditional bounds
plot_2d_problem(problem, xlim=bounds, ylim=bounds, granularity=0.025)

0.0
0.2

0.4
0.6

0.8
1.0 0.0

0.2
0.4

0.6
0.8

1.0
1.0
0.8
0.6
0.4
0.2

0.0
0.2
0.4

The number of optima can be varied independently by each dimension:

from leap_ec.real_rep.problems import CosineFamilyProblem, plot_2d_problem
problem = CosineFamilyProblem(alpha=3.0, global_optima_counts=[4, 2], local_optima_
→˓counts=[2, 2])
bounds = CosineFamilyProblem.bounds # Contains traditional bounds
plot_2d_problem(problem, xlim=bounds, ylim=bounds, granularity=0.025)

bounds = (0, 1)

evaluate(phenome)
Computes the function value from a real-valued phenome.

Parameters

2.3. Detailed Explanations 39

LEAP: Library for Evolutionary Algorithms in Python Documentation, Release v0.9dev

0.0
0.2

0.4
0.6

0.8
1.0 0.0

0.2
0.4

0.6
0.8

1.0
2.0
1.5
1.0
0.5

0.0
0.5
1.0
1.5

40 Chapter 2. LEAP Concepts

LEAP: Library for Evolutionary Algorithms in Python Documentation, Release v0.9dev

phenome – phenome with a real-valued phenome vector to be evaluated

Returns
its fitness.

class leap_ec.real_rep.problems.GaussianProblem(width=1, height=1, maximize=True)
A multidimensional, isotropic Gaussian function, defined by

𝐴 exp

(︃
−

𝑛∑︁
𝑖

(︁𝑥𝑖

𝑤

)︁2)︃

Parameters
• width (float) – the width parameter 𝑤

• height (float) – the height parameter 𝐴

from leap_ec.real_rep.problems import GaussianProblem, plot_2d_problem
bounds = GaussianProblem.bounds # Some typical bounds
problem = GaussianProblem(width=1, height=1)
plot_2d_problem(problem, xlim=bounds, ylim=bounds, granularity=0.1)

3 2 1 0 1 2 3 3
2

1
0

1
2

3

0.2
0.4
0.6

0.8

1.0

bounds = (-3, 3)

2.3. Detailed Explanations 41

LEAP: Library for Evolutionary Algorithms in Python Documentation, Release v0.9dev

evaluate(phenome)
Evaluate the given phenome.

Practitioners must over-ride this member function.

Note that by default the individual comparison operators assume a maximization problem; if this is a min-
imization problem, then just negate the value when returning the fitness.

Parameters
phenome – the phenome to evaluate (this will not be modified)

Returns
the fitness value

class leap_ec.real_rep.problems.GriewankProblem(maximize=False)
The classic Griewank problem. Like the RastriginProblem function, the Griewank has a quadratic global
structure with many local optima that are distrib in a regular pattern.

𝑓(x) =

𝑑∑︁
𝑖=1

𝑥2
𝑖

4000
−

𝑑∏︁
𝑖=1

cos

(︂
𝑥𝑖√
𝑖

)︂
+ 1

Parameters
maximize (bool) – the function is maximized if True, else minimized.

from leap_ec.real_rep.problems import GriewankProblem, plot_2d_problem
bounds = GriewankProblem.bounds # Contains traditional bounds
plot_2d_problem(GriewankProblem(), xlim=bounds, ylim=bounds, granularity=10)

from leap_ec.real_rep.problems import GriewankProblem, plot_2d_problem
bounds = [-50, 50]
plot_2d_problem(GriewankProblem(), xlim=bounds, ylim=bounds, granularity=1)

bounds = [-600, 600]

evaluate(phenome)
Computes the function value from a real-valued phenome.

Parameters
phenome – real-valued vector to be evaluated

Returns
its fitness.

class leap_ec.real_rep.problems.LangermannProblem(m=5, c=(1, 2, 5, 2, 3), a=((3, 5), (5, 2), (2, 1), (1,
4), (7, 9)), maximize=False)

A popular multi-modal test function built by summing together 𝑚 terms.

𝑓(x) = −
𝑚∑︁
𝑖=1

𝑐𝑖 exp

⎛⎝− 1

𝜋

𝑑∑︁
𝑗=1

(𝑥𝑗 −𝐴𝑖𝑗)
2

⎞⎠ cos

⎛⎝𝜋

𝑑∑︁
𝑗=1

(𝑥𝑗 −𝐴𝑖𝑗)
2

⎞⎠
Langermann’s function is parameterized by a vector 𝑐𝑖 of length 𝑚 and a matrix 𝐴𝑖𝑗 of dimension 𝑚× 𝑑. This
class uses the traditional parameterization as the default, with 𝑚 = 5 and

𝑐 = (1, 2, 5, 2, 3)

𝐴 =

⎡⎢⎢⎢⎢⎣
3 5
5 2
2 1
1 4
7 9

⎤⎥⎥⎥⎥⎦ .

42 Chapter 2. LEAP Concepts

LEAP: Library for Evolutionary Algorithms in Python Documentation, Release v0.9dev

600 400 200 0 200 400 600 600
400

200
0
200

400
600

0
25
50
75
100
125
150
175

2.3. Detailed Explanations 43

LEAP: Library for Evolutionary Algorithms in Python Documentation, Release v0.9dev

40
20

0
20

40
40

20
0

20
40

0.0
0.5
1.0
1.5
2.0
2.5
3.0

44 Chapter 2. LEAP Concepts

LEAP: Library for Evolutionary Algorithms in Python Documentation, Release v0.9dev

Parameters
• m (int) – total number of terms in the function’s sum

• c ([float]) – amplitude coefficients for each term

• a ([[float]]) – offsets points for each term

• maximize (bool) – the function is maximized if True, else minimized.

from leap_ec.real_rep.problems import LangermannProblem, plot_2d_problem
bounds = LangermannProblem.bounds # Contains traditional bounds
plot_2d_problem(LangermannProblem(), xlim=bounds, ylim=bounds, granularity=0.2)

0
2

4
6

8
10 0

2
4

6
8

10

4

2

0

2

4

bounds = [0, 10]

default_a = ((3, 5), (5, 2), (2, 1), (1, 4), (7, 9))

evaluate(phenome)
Computes the function value from a real-valued phenome.

Parameters
phenome – real-valued vector to be evaluated

Returns
its fitness.

2.3. Detailed Explanations 45

LEAP: Library for Evolutionary Algorithms in Python Documentation, Release v0.9dev

class leap_ec.real_rep.problems.LunacekProblem(N, d=1.0, mu_1=2.5, mu_2=None, s=None,
maximize=False)

Lunacek’s function is also know as the “double Rastrigin” or “bi-Rastrigin” problem, because it overlays a
RastriginProblem-style cosine function across a pair of spheroid functions.

This function was designed to model the double-funnel macrostructure that occurs in some difficult cases of the
Lennard-Jones function (a famous function from molecular dynamics).

𝑓(x) = min

(︃{︃
𝑁∑︁
𝑖=1

(𝑥𝑖 − 𝜇1)
2

}︃
,

{︃
𝑑 ·𝑁 + 𝑠 ·

𝑁∑︁
𝑖=1

(𝑥𝑖 − 𝜇2)
2

}︃)︃
+ 10

𝑁∑︁
𝑖=1

(1− cos(2𝜋(𝑥𝑖 − 𝜇𝑖))),

where 𝑁 is the dimensionality of the solution vector, and the second sphere center parameter 𝜇2 is typically
given by

𝜇2 = −
√︂

𝜇2
1 − 𝑑

𝑠

and 𝑠 is by default a function on 𝑁 :

𝑠 = 1− 1

2
√
𝑁 + 20− 8.2

These respective defaults are used for 𝜇2 and 𝑠 whenever mu_2 and s are set to None.

Because of these complicated defaults, this class requires that you explicitly set the dimensionality of 𝑁 of the
expected input solutions. A warning will be thrown if an input solution is encountered that doesn’t match the
expected dimensionality.

Parameters
• N (int) – dimensionality of the anticipated input solutions

• d (float) – base fitness value of the second spheroid

• mu_1 (float) – offset of the first spheroid

• mu_2 (float) – offset of the second spheroid (if None, this will be calculated automatically)

• s (float) – scale parameter for the second spheroid (if None, this will be calculated auto-
matically)

• maximize (bool) – the function is maximized if True, else minimized.

from leap_ec.real_rep.problems import LunacekProblem, plot_2d_problem
bounds = LunacekProblem.bounds # Contains traditional bounds
plot_2d_problem(LunacekProblem(N=2), xlim=bounds, ylim=bounds, granularity=0.1)

bounds = (-5, 5)

evaluate(phenome)
Computes the function value from a real-valued phenome.

Parameters
phenome – real-valued vector to be evaluated

Returns
its fitness.

class leap_ec.real_rep.problems.MatrixTransformedProblem(problem, matrix, maximize=None)
Apply a linear transformation to a fitness function.

46 Chapter 2. LEAP Concepts

LEAP: Library for Evolutionary Algorithms in Python Documentation, Release v0.9dev

4
2

0
2

4
4

2
0

2
4

0
10
20
30
40
50
60

2.3. Detailed Explanations 47

LEAP: Library for Evolutionary Algorithms in Python Documentation, Release v0.9dev

Parameters
matrix – an nxn matrix, where n is the genome length.

Returns
a function that first applies -matrix to the input, then applies fun to the transformed input.

For example, here we manually construct a 2x2 rotation matrix and apply it to the leap.RosenbrockProblem
function:

from matplotlib import pyplot as plt
from leap_ec.real_rep.problems import RosenbrockProblem, MatrixTransformedProblem,␣
→˓plot_2d_problem

original_problem = RosenbrockProblem()
theta = np.pi/2
matrix = [[np.cos(theta), -np.sin(theta)], [np.sin(theta), np.
→˓cos(theta)]]

transformed_problem = MatrixTransformedProblem(original_problem, matrix)

fig = plt.figure(figsize=(12, 8))

plt.subplot(221, projection='3d')
bounds = RosenbrockProblem.bounds # Contains traditional bounds
plot_2d_problem(original_problem, xlim=bounds, ylim=bounds, ax=plt.gca(),␣
→˓granularity=0.025)

plt.subplot(222, projection='3d')
plot_2d_problem(transformed_problem, xlim=bounds, ylim=bounds, ax=plt.gca(),␣
→˓granularity=0.025)

plt.subplot(223)
plot_2d_problem(original_problem, kind='contour', xlim=bounds, ylim=bounds, ax=plt.
→˓gca(), granularity=0.025)

plt.subplot(224)
plot_2d_problem(transformed_problem, kind='contour', xlim=bounds, ylim=bounds,␣
→˓ax=plt.gca(), granularity=0.025)

evaluate(phenome)
Evaluated the fitness of a point on the transformed fitness landscape.

For example, consider a sphere function whose global optimum is situated at (0, 1):

>>> import numpy as np
>>> s = TranslatedProblem(SpheroidProblem(), offset=[0, 1])
>>> round(s.evaluate(np.array([0, 1])), 5)
0

Now let’s take a rotation matrix that transforms the space by pi/2 radians:

>>> import numpy as np
>>> theta = np.pi/2
>>> matrix = [[np.cos(theta), -np.sin(theta)], [np.
→˓sin(theta), np.cos(theta)]]

(continues on next page)

48 Chapter 2. LEAP Concepts

LEAP: Library for Evolutionary Algorithms in Python Documentation, Release v0.9dev

2 1 0 1 2 2
1

0
1

2

1000
2000
3000

2 1 0 1 2 2
1

0
1

2

1000
2000
3000

2.0 1.5 1.0 0.5 0.0 0.5 1.0 1.5 2.0
2.0

1.5

1.0

0.5

0.0

0.5

1.0

1.5

2.0

2.0 1.5 1.0 0.5 0.0 0.5 1.0 1.5 2.0
2.0

1.5

1.0

0.5

0.0

0.5

1.0

1.5

2.0

(continued from previous page)

>>> r = MatrixTransformedProblem(s, matrix)

The rotation has moved the new global optimum to (1, 0)

>>> round(r.evaluate(np.array([1, 0])), 5)
0.0

The point (0, 1) lies at a distance of sqrt(2) from the new optimum, and has a fitness of 2:

>>> round(r.evaluate(np.array([0, 1])), 5)
2.0

classmethod random_orthonormal(problem, dimensions, maximize=None)
Create a MatrixTransformedProblem that performs a random rotation and/or inversion of the function.

We accomplish this by generating a random orthonormal basis for R^n and plugging the resulting matrix
into MatrixTransformedProblem.

The classic algorithm we use here is based on the Gramm-Schmidt process: we first generate a set of
random vectors, and then convert them into an orthonormal basis. This approach is described in Hansen
and Ostermeier’s original CMA-ES paper:

“Completely derandomized self-adaptation in evolution strategies.” Evolutionary Computation 9.2 (2001):
159-195.

Parameters
• problem – the original ScalarProblem to apply the transform to.

2.3. Detailed Explanations 49

LEAP: Library for Evolutionary Algorithms in Python Documentation, Release v0.9dev

• dimensions (int) – the number of elements each vector should have.

• maximize (bool) – whether to maximize or minimize the resulting fitness function. De-
faults to whatever setting the underlying problem uses.

from matplotlib import pyplot as plt
from leap_ec.real_rep.problems import CosineFamilyProblem,␣
→˓MatrixTransformedProblem, plot_2d_problem

original_problem = CosineFamilyProblem(alpha=1.0, global_optima_counts=[2, 3],␣
→˓local_optima_counts=[2, 3])

transformed_problem = MatrixTransformedProblem.random_orthonormal(original_
→˓problem, 2)

fig = plt.figure(figsize=(12, 8))

plt.subplot(221, projection='3d')
bounds = original_problem.bounds
plot_2d_problem(original_problem, xlim=bounds, ylim=bounds, ax=plt.gca(),␣
→˓granularity=0.025)

plt.subplot(222, projection='3d')
plot_2d_problem(transformed_problem, xlim=bounds, ylim=bounds, ax=plt.gca(),␣
→˓granularity=0.025)

plt.subplot(223)
plot_2d_problem(original_problem, kind='contour', xlim=bounds, ylim=bounds,␣
→˓ax=plt.gca(), granularity=0.025)

plt.subplot(224)
plot_2d_problem(transformed_problem, kind='contour', xlim=bounds, ylim=bounds,␣
→˓ax=plt.gca(), granularity=0.025)

class leap_ec.real_rep.problems.NoisyQuarticProblem(maximize=False)
The classic ‘quadratic quartic’ function with Gaussian noise:

𝑓(x) =

𝑛∑︁
𝑖=1

𝑖𝑥4
𝑖 + gauss(0, 1)

Parameters
maximize (bool) – the function is maximized if True, else minimized.

from leap_ec.real_rep.problems import NoisyQuarticProblem, plot_2d_problem
bounds = NoisyQuarticProblem.bounds # Contains traditional bounds
plot_2d_problem(NoisyQuarticProblem(), xlim=bounds, ylim=bounds, granularity=0.025)

bounds = (-1.28, 1.28)

evaluate(phenome)
Computes the function value from a real-valued list phenome (the output varies, since the function has
noise):

50 Chapter 2. LEAP Concepts

LEAP: Library for Evolutionary Algorithms in Python Documentation, Release v0.9dev

0.0 0.2 0.4 0.6 0.8 1.0 0.0
0.2

0.4
0.6

0.8
1.0

1.0

0.5

0.0

0.5

0.0 0.2 0.4 0.6 0.8 1.0 0.0
0.2

0.4
0.6

0.8
1.0

1.0

0.5

0.0

0.5

0.0 0.2 0.4 0.6 0.8
0.0

0.2

0.4

0.6

0.8

0.0 0.2 0.4 0.6 0.8
0.0

0.2

0.4

0.6

0.8

>>> phenome = [3.5, -3.8, 5.0]
>>> r = NoisyQuarticProblem().evaluate(phenome)
>>> print(f'Result: {r}')
Result: ...

Parameters
phenome – real-valued vector to be evaluated

Returns
its fitness

worse_than(first_fitness, second_fitness)
We minimize by default:

>>> s = NoisyQuarticProblem()
>>> s.worse_than(100, 10)
True

>>> s = NoisyQuarticProblem(maximize=True)
>>> s.worse_than(100, 10)
False

class leap_ec.real_rep.problems.ParabaloidProblem(diagonal_matrix: ndarray, rotation_matrix:
ndarray, maximize=False)

A generalization of the SpheroidProblem into parabaloids (including elliptic and hyperbolic parabaloids).

2.3. Detailed Explanations 51

LEAP: Library for Evolutionary Algorithms in Python Documentation, Release v0.9dev

1.0 0.5 0.0
0.5

1.0
1.0

0.5
0.0

0.5
1.0

2.5
0.0
2.5
5.0
7.5
10.0

52 Chapter 2. LEAP Concepts

LEAP: Library for Evolutionary Algorithms in Python Documentation, Release v0.9dev

We construct the parabaloid by combining a diagonal matrix (which defines an axis-aligned parabaloid) with
an orthornormal rotation. Together, these make up the eigenvalues and eigenbasis, respectively, of an arbitrary
parabaloid:

A = R⊤DR

We then compute fitness by interpretting 𝐴 as a quadratic form:

𝑓(𝑥) = 𝑥⊤A𝑥

When the eigenvalues are all positive, then the result is an elliptic parabaloid

from leap_ec.real_rep .problems import ParabaloidProblem, plot_2d_problem
from matplotlib import pyplot as plt
import numpy as np

p = ParabaloidProblem(diagonal_matrix=np.diag([1, 5]), rotation_matrix=np.
→˓identity(2))
plot_2d_problem(p, xlim=(-10, 10), ylim=(-10, 10), granularity=0.5)
plt.show()

10
5

0
5

10 10
5

0
5

10
0

100
200
300
400
500
600

If one or more eigenvalues are negative, then a hyperbolic parabloid results, which has a saddle shape:

2.3. Detailed Explanations 53

LEAP: Library for Evolutionary Algorithms in Python Documentation, Release v0.9dev

from leap_ec.real_rep .problems import ParabaloidProblem, plot_2d_problem
from matplotlib import pyplot as plt
import numpy as np

p = ParabaloidProblem(diagonal_matrix=np.diag([-3, 5]), rotation_matrix=np.
→˓identity(2))
plot_2d_problem(p, xlim=(-10, 10), ylim=(-10, 10), granularity=0.5)
plt.show()

10
5

0
5

10 10
5

0
5

10
300
200
100
0

100
200
300
400
500

evaluate(phenome)
Evaluate the given phenome.

Practitioners must over-ride this member function.

Note that by default the individual comparison operators assume a maximization problem; if this is a min-
imization problem, then just negate the value when returning the fitness.

Parameters
phenome – the phenome to evaluate (this will not be modified)

Returns
the fitness value

class leap_ec.real_rep.problems.QuadraticFamilyProblem(diagonal_matrices: list, rotation_matrices:
list, offset_vectors: list, fitness_offsets: list,
maximize=False)

54 Chapter 2. LEAP Concepts

LEAP: Library for Evolutionary Algorithms in Python Documentation, Release v0.9dev

A configurable multi-modal function based on combinations of spheroids or parabaloids. Taken from the problem
generators proposed by Rönkkönen et al. [RonkkonenLKL08].

The function is given by

𝑓(x) = min
𝑖=1,2,...,𝑞

(︀
(x− p𝑖)

⊤B−1
𝑖 (x− p𝑖) + 𝑣𝑖

)︀
where the p𝑖 gives the center of each quadratic (i.e. the location of each local minimum), the 𝑣𝑖 give their fitness
values, and the B−1

𝑖 are symmetric matrices.

The easiest way to create one of these problems is to use the random generator:

from leap_ec.real_rep.problems import QuadraticFamilyProblem, plot_2d_problem
from matplotlib import pyplot as plt

problem = QuadraticFamilyProblem.generate(dimensions=2, num_basins=30)
plot_2d_problem(problem, xlim=(-10, 10), ylim=(-10, 10), granularity=0.5)
plt.show()

10
5

0
5

10 10
5

0
5

10

20
40
60
80
100
120

You can also specify the problem structure directly by providing two matrices for each parabaloid along with an
offset vector (for translation) and a scalar offset (to define the minimum fitness value for the basin):

from leap_ec.real_rep.problems import QuadraticFamilyProblem, plot_2d_problem,␣
→˓random_orthonormal_matrix

(continues on next page)

2.3. Detailed Explanations 55

LEAP: Library for Evolutionary Algorithms in Python Documentation, Release v0.9dev

(continued from previous page)

from matplotlib import pyplot as plt
import numpy as np

Define the parameters for each parabaloid

diag1 = np.diag([2, 4]) # Diagonal matrix defining the widths (eigenvalues) of␣
→˓the basin for each dimension
rot1 = np.identity(2) # Rotation matrix, in this case the identity (no␣
→˓rotation)
offset1 = np.array([-1, -1]) # Offset used to translate the basin location
fitness1 = 0 # Fitness value of the local optimum

diag2 = np.diag([5, 1])
rot2 = random_orthonormal_matrix(dimensions=2) # Apply a random rotation to the␣
→˓second basin
offset2 = np.array([3, 4])
fitness2 = 100.0

Build the problem
problem = QuadraticFamilyProblem(

diagonal_matrices = [diag1, diag2],
rotation_matrices = [rot1, rot2],
offset_vectors = [offset1, offset2],
fitness_offsets = [fitness1, fitness2]

)

Visualize
plot_2d_problem(problem, xlim=(-10, 10), ylim=(-10, 10), granularity=0.5)
plt.show()

property dimensions

evaluate(phenome)
Evaluate the given phenome.

Practitioners must over-ride this member function.

Note that by default the individual comparison operators assume a maximization problem; if this is a min-
imization problem, then just negate the value when returning the fitness.

Parameters
phenome – the phenome to evaluate (this will not be modified)

Returns
the fitness value

classmethod generate(dimensions: int, num_basins: int, num_global_optima: int = 1, width_bounds:
tuple = (1, 5), offset_bounds: tuple = (-10, 10), fitness_offset_bounds: tuple = (10,
100))

Convenient method to generate a QuadraticFamilyProblem by randomly sampling the matrices that define
it.

>>> problem = QuadraticFamilyProblem.generate(10, 20, num_global_optima = 2)
>>> x = problem.evaluate(np.array([0.0, 0.5, 0.0, 0.6, 0.0, 0.7, 0.6, 0.8, 4.3,␣
→˓0.2]))

56 Chapter 2. LEAP Concepts

LEAP: Library for Evolutionary Algorithms in Python Documentation, Release v0.9dev

10
5

0
5

10 10
5

0
5

10
0

100
200
300
400
500

2.3. Detailed Explanations 57

LEAP: Library for Evolutionary Algorithms in Python Documentation, Release v0.9dev

property num_basins

class leap_ec.real_rep.problems.RastriginProblem(a=1.0, maximize=False)
The classic Rastrigin problem. The Rastrigin provides a real-valued fitness landscape with a quadratic global
structure (like the SpheroidProblem), plus a sinusoidal local structure with many local optima.

𝑓(𝑥⃗) = 𝐴𝑛+

𝑛∑︁
𝑖=1

𝑥2
𝑖 −𝐴 cos(2𝜋𝑥𝑖)

Parameters
maximize (bool) – the function is maximized if True, else minimized.

from leap_ec.real_rep.problems import RastriginProblem, plot_2d_problem
bounds = RastriginProblem.bounds # Contains traditional bounds
plot_2d_problem(RastriginProblem(), xlim=bounds, ylim=bounds, granularity=0.025)

4 2 0
2

4
4

2
0

2
4

10
20
30
40
50

bounds = (-5.12, 5.12)

evaluate(phenome)
Computes the function value from a real-valued list phenome:

>>> phenome = [1.0/12, 0]
>>> RastriginProblem().evaluate(phenome)
0.1409190406...

58 Chapter 2. LEAP Concepts

LEAP: Library for Evolutionary Algorithms in Python Documentation, Release v0.9dev

Parameters
phenome – real-valued vector to be evaluated

Returns
its fitness

worse_than(first_fitness, second_fitness)
We minimize by default:

>>> s = RastriginProblem()
>>> s.worse_than(100, 10)
True

>>> s = RastriginProblem(maximize=True)
>>> s.worse_than(100, 10)
False

class leap_ec.real_rep.problems.RosenbrockProblem(maximize=False)
The classic RosenbrockProblem problem, a.k.a. the “banana” or “valley” function.

𝑓(x) =

𝑑−1∑︁
𝑖=1

[︀
100(𝑥𝑖+1 − 𝑥2

𝑖)
2 + (𝑥𝑖 − 1)2

]︀
Parameters
maximize (bool) – the function is maximized if True, else minimized.

from leap_ec.real_rep.problems import RosenbrockProblem, plot_2d_problem
bounds = RosenbrockProblem.bounds # Contains traditional bounds
plot_2d_problem(RosenbrockProblem(), xlim=bounds, ylim=bounds, granularity=0.025)

bounds = (-2.048, 2.048)

evaluate(phenome)
Computes the function value from a real-valued list phenome:

>>> phenome = [0.5, -0.2, 0.1]
>>> RosenbrockProblem().evaluate(phenome)
22.3

Parameters
phenome – real-valued vector to be evaluated

Returns
its fitness

worse_than(first_fitness, second_fitness)
We minimize by default:

>>> s = RosenbrockProblem()
>>> s.worse_than(100, 10)
True

>>> s = RosenbrockProblem(maximize=True)
>>> s.worse_than(100, 10)
False

2.3. Detailed Explanations 59

LEAP: Library for Evolutionary Algorithms in Python Documentation, Release v0.9dev

2
1

0
1

2 2
1

0
1

2

500
1000
1500
2000
2500
3000
3500

60 Chapter 2. LEAP Concepts

LEAP: Library for Evolutionary Algorithms in Python Documentation, Release v0.9dev

class leap_ec.real_rep.problems.ScaledProblem(problem, new_bounds, maximize=None)
Scale the search space of a fitness function up or down.

evaluate(phenome)
Evaluate the given phenome.

Practitioners must over-ride this member function.

Note that by default the individual comparison operators assume a maximization problem; if this is a min-
imization problem, then just negate the value when returning the fitness.

Parameters
phenome – the phenome to evaluate (this will not be modified)

Returns
the fitness value

class leap_ec.real_rep.problems.SchwefelProblem(alpha=418.982887, maximize=False)
Schwefel’s function is another traditional multimodal test function whose local optima are distributed in a slightly
irregular way, and whose global optimum is out at the edge of the search space (with no gently sloping macrostruc-
ture to guide the algorithm toward it).

Compare this to the RastriginProblem function, whose global optimum lies at the center of a quadratic bowl
with a regular grid of local optima.

𝑓(x) =

𝑑∑︁
𝑖=1

(︁
−𝑥𝑖 · sin

(︁√︀
|𝑥𝑖|
)︁)︁

+ 𝛼 · 𝑑

Parameters
• alpha (float) – fitness offset (the default value ensures that the global optimum has zero

fitness)

• maximize (bool) – the function is maximized if True, else minimized.

from leap_ec.real_rep.problems import SchwefelProblem, plot_2d_problem
bounds = SchwefelProblem.bounds # Contains traditional bounds
plot_2d_problem(SchwefelProblem(), xlim=bounds, ylim=bounds, granularity=10)

bounds = (-512, 512)

evaluate(phenome)
Computes the function value from a real-valued phenome.

Parameters
phenome – phenome with a real-valued phenome to be evaluated

Returns
its fitness.

class leap_ec.real_rep.problems.ShekelProblem(k=500, c=array([1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13,
14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25]),
maximize=False)

The classic ‘Shekel’s foxholes’ function.

𝑓(x) =
1

1
𝐾 +

∑︀25
𝑗=1

1
𝑓𝑗(x)

2.3. Detailed Explanations 61

LEAP: Library for Evolutionary Algorithms in Python Documentation, Release v0.9dev

400 200 0
200

400
400

200
0

200
400

250
500
750
1000
1250
1500

62 Chapter 2. LEAP Concepts

LEAP: Library for Evolutionary Algorithms in Python Documentation, Release v0.9dev

where

𝑓𝑗(x) = 𝑐𝑗 +

2∑︁
𝑖=1

(𝑥𝑖 − 𝑎𝑖𝑗)
6

and the points {(𝑎1𝑗 , 𝑎2𝑗)}25𝑗=1 define the functions various optima, and are given by the following hardcoded
matrix:

[𝑎𝑖𝑗] =

[︂
−32 −16 0 16 32 −32 −16 · · · 0 16 32
−32 −32 −32 −32 −32 −16 −16 · · · 32 32 32

]︂
.

Parameters
• k (int) – the value of 𝐾 in the fitness function.

• c ([int]) – list of values for the function’s 𝑐𝑗 parameters. Each c[j] approximately corre-
sponds to the depth of the jth foxhole.

• maximize (bool) – the function is maximized if True, else minimized.

• maximize – the function is maximized if True, else minimized.

from leap_ec.real_rep.problems import ShekelProblem, plot_2d_problem
bounds = ShekelProblem.bounds # Contains traditional bounds
plot_2d_problem(ShekelProblem(), xlim=bounds, ylim=bounds, granularity=0.9)

60 40 20 0 20 40 60 60
40

20
0

20
40

60

100
200
300

400

2.3. Detailed Explanations 63

LEAP: Library for Evolutionary Algorithms in Python Documentation, Release v0.9dev

bounds = (-65.536, 65.536)

evaluate(phenome)
Computes the function value from a real-valued list phenome (the output varies, since the function has
noise).

Parameters
phenome – real-valued to be evaluated

Returns
its fitness

points = array([[-32, -16, 0, 16, 32, -32, -16, 0, 16, 32, -32, -16, 0, 16, 32, -32,
-16, 0, 16, 32, -32, -16, 0, 16, 32], [-32, -32, -32, -32, -32, -16, -16, -16, -16,
-16, 0, 0, 0, 0, 0, 16, 16, 16, 16, 16, 32, 32, 32, 32, 32]])

worse_than(first_fitness, second_fitness)
We minimize by default:

>>> s = ShekelProblem()
>>> s.worse_than(100, 10)
True

>>> s = ShekelProblem(maximize=True)
>>> s.worse_than(100, 10)
False

class leap_ec.real_rep.problems.SpheroidProblem(maximize=False)
Classic paraboloid function, known as the “sphere” or “spheroid” problem, because its equal-fitness contours
form (hyper)spheres in n > 2.

𝑓(𝑥⃗) =

𝑛∑︁
𝑖

𝑥2
𝑖

Parameters
maximize (bool) – the function is maximized if True, else minimized.

from leap_ec.real_rep.problems import SpheroidProblem, plot_2d_problem
bounds = SpheroidProblem.bounds # Contains traditional bounds
plot_2d_problem(SpheroidProblem(), xlim=bounds, ylim=bounds, granularity=0.025)

bounds = (-5.12, 5.12)

evaluate(phenome)
Computes the function value from a real-valued list phenome:

>>> phenome = [0.5, 0.8, 1.5]
>>> SpheroidProblem().evaluate(phenome)
3.14

Parameters
phenome – real-valued vector to be evaluated

Returns
it’s fitness, sum(phenome**2)

64 Chapter 2. LEAP Concepts

LEAP: Library for Evolutionary Algorithms in Python Documentation, Release v0.9dev

4 2 0
2

4
4

2
0

2
4

10
20
30
40
50

2.3. Detailed Explanations 65

LEAP: Library for Evolutionary Algorithms in Python Documentation, Release v0.9dev

worse_than(first_fitness, second_fitness)
We minimize by default:

>>> s = SpheroidProblem()
>>> s.worse_than(100, 10)
True

>>> s = SpheroidProblem(maximize=True)
>>> s.worse_than(100, 10)
False

class leap_ec.real_rep.problems.StepProblem(maximize=True)
The classic ‘step’ function—a function with a linear global structure, but with stair-like plateaus at the local level.

𝑓(x) =

𝑛∑︁
𝑖=1

⌊𝑥𝑖⌋

where ⌊𝑥⌋ denotes the floor function.

Parameters
maximize (bool) – the function is maximized if True, else minimized.

from leap_ec.real_rep.problems import StepProblem, plot_2d_problem
bounds = StepProblem.bounds # Contains traditional bounds
plot_2d_problem(StepProblem(), xlim=bounds, ylim=bounds, granularity=0.025)

bounds = (-5.12, 5.12)

evaluate(phenome)
Computes the function value from a real-valued list phenome:

>>> import numpy as np
>>> phenome = np.array([3.5, -3.8, 5.0])
>>> StepProblem().evaluate(phenome)
4.0

Parameters
phenome – real-valued vector to be evaluated

Returns
its fitness

worse_than(first_fitness, second_fitness)
We maximize by default:

>>> s = StepProblem()
>>> s.worse_than(100, 10)
False

>>> s = StepProblem(maximize=False)
>>> s.worse_than(100, 10)
True

66 Chapter 2. LEAP Concepts

LEAP: Library for Evolutionary Algorithms in Python Documentation, Release v0.9dev

4 2 0
2

4
4

2
0

2
4

10

5

0

5

10

2.3. Detailed Explanations 67

LEAP: Library for Evolutionary Algorithms in Python Documentation, Release v0.9dev

class leap_ec.real_rep.problems.TranslatedProblem(problem, offset, maximize=None)
Takes an existing fitness function and translates it by applying a fixed offset vector.

For example,

from matplotlib import pyplot as plt
from leap_ec.real_rep.problems import SpheroidProblem, TranslatedProblem, plot_2d_
→˓problem

original_problem = SpheroidProblem()
offset = [-1.0, -2.5]
translated_problem = TranslatedProblem(original_problem, offset)

fig = plt.figure(figsize=(12, 8))

plt.subplot(221, projection='3d')
bounds = SpheroidProblem.bounds # Contains traditional bounds
plot_2d_problem(original_problem, xlim=bounds, ylim=bounds, ax=plt.gca(),␣
→˓granularity=0.025)

plt.subplot(222, projection='3d')
plot_2d_problem(translated_problem, xlim=bounds, ylim=bounds, ax=plt.gca(),␣
→˓granularity=0.025)

plt.subplot(223)
plot_2d_problem(original_problem, kind='contour', xlim=bounds, ylim=bounds, ax=plt.
→˓gca(), granularity=0.025)

plt.subplot(224)
plot_2d_problem(translated_problem, kind='contour', xlim=bounds, ylim=bounds,␣
→˓ax=plt.gca(), granularity=0.025)

evaluate(phenome)
Evaluate the fitness of a point after translating the fitness function.

Translation can be used in higher than two dimensions:

>>> import numpy as np
>>> offset = [-1.0, -1.0, 1.0, 1.0, -5.0]
>>> t_sphere = TranslatedProblem(SpheroidProblem(), offset)
>>> genome = np.array([0.5, 2.0, 3.0, 8.5, -0.6])
>>> t_sphere.evaluate(genome)
90.86

classmethod random(problem, offset_bounds, dimensions, maximize=None)
Apply a random real-valued translation to a fitness function, sampled uniformly between min_offset and
max_offset in every dimension.

>>> from leap_ec.real_rep.problems import TranslatedProblem, RastriginProblem,␣
→˓plot_2d_problem

>>> original_problem = RastriginProblem()
>>> bounds = RastriginProblem.bounds # Contains traditional bounds
>>> translated_problem = TranslatedProblem.random(original_problem, bounds, 2)

68 Chapter 2. LEAP Concepts

LEAP: Library for Evolutionary Algorithms in Python Documentation, Release v0.9dev

4 2 0 2 4 4
2
0

2
4

10
20
30
40
50

4 2 0 2 4 4
2
0

2
4

20
40
60
80

4 2 0 2 4

4

2

0

2

4

4 2 0 2 4

4

2

0

2

4

>>> plot_2d_problem(translated_problem, kind='contour', xlim=bounds,␣
→˓ylim=bounds)
<matplotlib.contour...>

from leap_ec.real_rep.problems import TranslatedProblem, RastriginProblem, plot_
→˓2d_problem

original_problem = RastriginProblem()
bounds = RastriginProblem.bounds # Contains traditional bounds
translated_problem = TranslatedProblem.random(original_problem, bounds, 2)

plot_2d_problem(translated_problem, kind='contour', xlim=bounds, ylim=bounds)

class leap_ec.real_rep.problems.WeierstrassProblem(kmax=20, a=0.5, b=3, maximize=False)
The Weierstrass function is famous for being the first discovered example of a function that is continuous, but
not differentiable. Built by adding the terms of a Fourier series, it has a jagged, self-similar structure:

𝑓(x) =

𝑑∑︁
𝑖=1

[︃
𝑘𝑚𝑎𝑥∑︁
𝑘=0

𝑎𝑘 cos
(︀
2𝜋𝑏𝑘(𝑥𝑖 + 0.5)

)︀
− 𝑛

𝑘𝑚𝑎𝑥∑︁
𝑘=0

𝑎𝑘 cos(𝜋𝑏𝑘)

]︃

When used in optimization benchmarks, it’s typical to carry out the Fourier sum to kmax=20 terms.

Parameters
• kmax (int) – number of terms to carry the Fourier sum out to

• a (float) – amplitude parameter of the cosine terms

2.3. Detailed Explanations 69

LEAP: Library for Evolutionary Algorithms in Python Documentation, Release v0.9dev

4 2 0 2 4

4

2

0

2

4

70 Chapter 2. LEAP Concepts

LEAP: Library for Evolutionary Algorithms in Python Documentation, Release v0.9dev

• b (float) – wavenumber (frequency) parameter of the cosine terms

• maximize (bool) – the function is maximized if True, else minimized.

from leap_ec.real_rep.problems import WeierstrassProblem, plot_2d_problem
bounds = WeierstrassProblem.bounds # Contains traditional bounds
plot_2d_problem(WeierstrassProblem(), xlim=bounds, ylim=bounds, granularity=0.01)

0.4
0.2

0.0
0.2

0.4
0.4

0.2
0.0

0.2
0.4

0
1
2
3
4
5
6
7

bounds = [-0.5, 0.5]

evaluate(phenome)
Computes the function value from a real-valued phenome.

Parameters
phenome – real-valued vector to be evaluated

Returns
its fitness.

leap_ec.real_rep.problems.plot_2d_contour(fun, xlim, ylim, granularity, ax=None, title=None, pad=None)
Convenience method for plotting contours for a function that accepts 2-D real-valued inputs and produces a 1-D
scalar output.

Parameters
• fun (function) – The function to plot.

2.3. Detailed Explanations 71

LEAP: Library for Evolutionary Algorithms in Python Documentation, Release v0.9dev

• xlim ((float, float)) – Bounds of the horizontal axes.

• ylim ((float, float)) – Bounds of the vertical axis.

• ax (Axes) – Matplotlib axes to plot to (if None, a new figure will be created).

• granularity (float) – Spacing of the grid to sample points along.

• pad – An array of extra gene values, used to fill in the hidden dimensions with contants while
drawing fitness contours.

The difference between this and plot_2d_problem() is that this takes a raw function (instead of a Problem
object).

import numpy as np
from scipy import linalg

from leap_ec.real_rep.problems import plot_2d_contour

def sinc_hd(phenome):
r = linalg.norm(phenome)
return np.sin(r)/r

plot_2d_contour(sinc_hd, xlim=(-10, 10), ylim=(-10, 10), granularity=0.2)

10.0 7.5 5.0 2.5 0.0 2.5 5.0 7.5
10.0

7.5

5.0

2.5

0.0

2.5

5.0

7.5

leap_ec.real_rep.problems.plot_2d_function(fun, xlim, ylim, granularity=0.1, ax=None, title=None,
pad=None, **kwargs)

72 Chapter 2. LEAP Concepts

LEAP: Library for Evolutionary Algorithms in Python Documentation, Release v0.9dev

Convenience method for plotting a function that accepts 2-D real-valued imputs and produces a 1-D scalar output.

Parameters
• fun (function) – The function to plot.

• xlim ((float, float)) – Bounds of the horizontal axes.

• ylim ((float, float)) – Bounds of the vertical axis.

• ax (Axes) – Matplotlib axes to plot to (if None, a new figure will be created).

• granularity (float) – Spacing of the grid to sample points along.

• pad – An array of extra gene values, used to fill in the hidden dimensions with contants while
drawing fitness contours.

• kwargs – additional keyword arguments to pass along to plot_surface() or contour()

The difference between this and plot_2d_problem() is that this takes a raw function (instead of a Problem
object).

import numpy as np
from scipy import linalg

from leap_ec.real_rep.problems import plot_2d_function

def sinc_hd(phenome):
r = linalg.norm(phenome)
return np.sin(r)/r

plot_2d_function(sinc_hd, xlim=(-10, 10), ylim=(-10, 10), granularity=0.2)

leap_ec.real_rep.problems.plot_2d_problem(problem, xlim=None, ylim=None, kind='surface', ax=None,
granularity=None, title=None, pad=None, **kwargs)

Convenience function for plotting a Problem that accepts 2-D real-valued phenomes and produces a 1-D scalar
fitness output.

Parameters
• fun (Problem) – The Problem to plot.

• xlim ((float, float)) – Bounds of the horizontal axes. If None, uses problem.bounds.

• ylim ((float, float)) – Bounds of the vertical axis. If None, uses problem.bounds.

• kind (str) – The kind of plot to create: ‘surface’ or ‘contour’

• pad – An array of extra gene values, used to fill in the hidden dimensions with contants while
drawing fitness contours.

• ax (Axes) – Matplotlib axes to plot to (if None, a new figure will be created).

• granularity (float) – Spacing of the grid to sample points along. If none is given, then
the granularity will default to 1/50th of the range of the function’s bounds attribute.

• kwargs – additional keyword arguments to pass along to plot_surface()

The difference between this and plot_2d_function() is that this takes a Problem object (instead of a raw
function).

If no axes are specified, a new figure is created for the plot:

2.3. Detailed Explanations 73

LEAP: Library for Evolutionary Algorithms in Python Documentation, Release v0.9dev

10
5

0
5

10 10
5

0
5

10

0.2
0.0
0.2
0.4
0.6
0.8
1.0

74 Chapter 2. LEAP Concepts

LEAP: Library for Evolutionary Algorithms in Python Documentation, Release v0.9dev

from leap_ec.real_rep.problems import CosineFamilyProblem, plot_2d_problem
problem = CosineFamilyProblem(alpha=1.0, global_optima_counts=[2, 2], local_optima_
→˓counts=[2, 2])
plot_2d_problem(problem, xlim=(0, 1), ylim=(0, 1), granularity=0.025);

0.0
0.2

0.4
0.6

0.8
1.0 0.0

0.2
0.4

0.6
0.8

1.0
1.0
0.8
0.6
0.4
0.2

0.0
0.2
0.4

You can also specify axes explicitly (ex. by using ax=plt.gca(). When plotting surfaces, you must configure your
axes to use projection=’3d’. Contour plots don’t need 3D axes:

from matplotlib import pyplot as plt
from leap_ec.real_rep.problems import RastriginProblem, plot_2d_problem

fig = plt.figure(figsize=(12, 4))
bounds=RastriginProblem.bounds # Contains default bounds

plt.subplot(121, projection='3d')
plot_2d_problem(RastriginProblem(), ax=plt.gca(), xlim=bounds, ylim=bounds)

plt.subplot(122)
plot_2d_problem(RastriginProblem(), ax=plt.gca(), kind='contour', xlim=bounds,␣
→˓ylim=bounds)

leap_ec.real_rep.problems.random(size=None)
Return random floats in the half-open interval [0.0, 1.0). Alias for random_sample to ease forward-porting to

2.3. Detailed Explanations 75

LEAP: Library for Evolutionary Algorithms in Python Documentation, Release v0.9dev

4 2 0 2 4
4

2
0

2
4

0
10
20
30
40
50

4 2 0 2 4

4

2

0

2

4

the new random API.

leap_ec.real_rep.problems.random_orthonormal_matrix(dimensions: int)
Generate a random orthornomal matrix using the Gramm-Schmidt process.

Orthonormal matrices represent rotations (and flips) of a space.

The defining property of an orthonormal matrix is that its transpose is its inverse:

>>> Q = random_orthonormal_matrix(10)
>>> np.allclose(Q.dot(Q.T), np.identity(10))
True

2.3.5 Pipeline Operators

Fig. 2.6: LEAP operator pipeline. This figure depicts a typical LEAP operator pipeline. First is a parent population
from which the next operator selects individuals, which are then cloned by the next operator to be followed by operators
for mutating and evaluating the individual. (For brevity, a crossover operator was not included, but could also have
been freely inserted into this pipeline.) The pool operator is a sink for offspring, and drives the demand for the upstream
operators to repeatedly select, clone, mutate, and evaluate individuals repeatedly until the pool has the desired number
of offspring. Lastly, another selection operator returns the final set of individuals based on the offspring pool and
optionally the parents.

76 Chapter 2. LEAP Concepts

LEAP: Library for Evolutionary Algorithms in Python Documentation, Release v0.9dev

Overview

leap_ec.individual.Individual, leap_ec.problem.Problem , and leap_ec.decoder.Decoder are passive
classes that need an external framework to make them function. In LEAP Concepts the notion of a pipeline of evo-
lutionary algorithm (EA) operators that use these classes was introduced. That is, Individual, Decoder, and Problem
are the “nouns” and the pipeline operators a the verbs that operate on those nouns. The operator pipeline objective
is to create a new set of evaluated individuals from an existing set of prospective parents that can be in a new set of
prospective parents.

Fig. 2.6 is shown again here to depict a typical set of LEAP pipeline operators. The pipeline generally starts with a
“source”, or a parent population, from which the next operator typically selects for creating offspring. This is followed
by a clone operator that ensure the subsequent pertubation operators do not modify the selected parents. (And so it
is critically important that users always have a clone operator as a part of the offspring creation pipeline before any
mutation, crossover, or other genome altering operators.) The pertubation operators can be mutation or also include
a crossover operator. At this point in the pipeline we have a completed offspring with no fitness, so the next operator
evaluates the offspring to assign that fitness. Then the evaluated offspring is collected into a pool of offspring that acts
as a “sink” for new individuals, and is the principal driving for the pipeline; i.e., it is the need to fill the sink that “pulls”
individuals down the pipeline. Once the offspring pool reaches a desired size it returns all the offspring to another
selection operator to cull the offspring, and optionally the parents, to return the next set of prospective parents.

Or, more explicitly:

1. Start with a collection of Individuals that are prospective parents as the pipeline “source”

2. A selection operator for selecting one or more parents to begin the creation of a new offspring

3. A clone operator that makes a copy of the selected parents to ensure the following operators don’t overwrite those
parents

4. A set of mutation, crossover, or other operators that perturb the cloned individual’s genome, thus (hopefully)
giving the new offspring unique values

5. An operator to evaluate the new offspring

6. A pool that serves as a “sink” for evaluated offspring; this pool is sent to the next operator, or is returned from
the function, once the pool reaches a specified size

7. Another selection operator to cull the offspring (and optionally parents) to return a population of new prospective
parents

This is, the general sequence for most LEAP pipelines, but there will be the occasional variation on this theme. For
example, many of the provided “canned” algorithms take just snippets of an offspring creation pipeline. E.g., leap_ec.
distributed.asynchronous.steady_state() has an offspring_pipeline parameter that doesn’t have parents ex-
plicitly as part of the pipeline; instead, for steady_state() it’s implied that the parents will be provided during the run
internally.

Implementation Details

The LEAP pipeline is implemented using the toolz.functoolz.pipe() function, which has arguments comprised
of a collection of data followed by an arbitrary number of functions. When invoked the data is passed as an argument to
the first function, and the output of that function is fed as an argument to the next function — this repeats for the rest of
the functions. The output of the last function is returned as the overall pipeline output. (See: https://toolz.readthedocs.
io/en/latest/api.html#toolz.functoolz.pipe)

2.3. Detailed Explanations 77

https://toolz.readthedocs.io/en/latest/api.html#toolz.functoolz.pipe
https://toolz.readthedocs.io/en/latest/api.html#toolz.functoolz.pipe

LEAP: Library for Evolutionary Algorithms in Python Documentation, Release v0.9dev

Loose-coupling via generator functions

The first “data” argument is a collection of Individuals representing prospective parents, which can be a sequence,
such as a list or tuple. The design philosophy for the operator functions that follow was to ensure they were as loosely
coupled as possible. This was achieved by implementing some operators as generator functions that accept iterators
as arguments. That way, new operators can be spliced into the pipeline and they’d automatically “hook up” to their
neighbors.

For example, consider the following snippet:

gen = 0
while gen < max_generation:

offspring = toolz.pipe(parents,
ops.tournament_selection,
ops.clone,

mutate_bitflip,
ops.evaluate,
ops.pool(size=len(parents)))

parents = offspring
gen += 1

The above code snippet is an example of a very basic genetic algorithm implementation that uses a toolz.pipe() function
to link together a series of operators to do the following:

1. binary tournament_selection selection on a set of parents

2. clone those that were selected

3. perform mutation bit-bitflip on the clones

4. evaluate the offspring

5. accumulate as many offspring as there are parents

Since we only have mutation in the pipeline, only one parent at a time is selected to be cloned to create an offspring.
However, let’s make one change to that pipeline by adding crossover:

gen = 0
while gen < max_generation:

offspring = toolz.pipe(parents,
ops.tournament_selection,
ops.clone,

mutate_bitflip,
ops.uniform_crossover, # NEW OPERATOR
ops.evaluate,
ops.pool(size=len(parents)))

parents = offspring
gen += 1

This does the following:

1. binary tournament_selection selection on a set of parents

2. clone those that were selected

3. perform mutation bitflip on the clones

4. perform uniform crossover between the two offspring

78 Chapter 2. LEAP Concepts

LEAP: Library for Evolutionary Algorithms in Python Documentation, Release v0.9dev

5. evaluate the offspring

6. accumulate as many offspring as there are parents

Adding crossover means that now two parents are selected instead of one. However, note that the tournament_selection
selection operator wasn’t changed. It automatically selects two parents instead of one, as necessary.

Let’s take a closer look at uniform_crossover() (this is a simplified version; the actual code has more type checking and
docstrings).

def uniform_crossover(next_individual: Iterator,
p_swap: float = 0.5) -> Iterator:

def _uniform_crossover(ind1, ind2, p_swap):
for i in range(len(ind1.genome)):

if random.random() < p_swap:
ind1.genome[i], ind2.genome[i] = ind2.genome[i], ind1.genome[i]

return ind1, ind2

while True:
parent1 = next(next_individual)
parent2 = next(next_individual)

child1, child2 = _uniform_crossover(parent1, parent2, p_swap)

yield child1
yield child2

Note that the argument next_individual is an Iterator that “hooks up” to a previously yielded Individual from the
previous pipeline operator. The uniform_crossover operator doesn’t care how the previous Individual is made, it just
has a contract that when next() is invoked that it will get another Individual. And, since this is a generator function,
it yields the crossed-over Individuals. It also has two yield statements that ensures both crossed-over Individuals are
returned, thus eliminating a potential source of genetic drift by arbitrarily only yielding one and discarding the other.

Operators for collections of Individuals

There is another class of operators that work on collections of Individuals such as selection and pooling operators.
Generally:

selection pipeline operators
accept a collection of Individuals and yield a selected Individual (and thus are generator functions)

pooling operators
accept an Iterator from which to get the next() Individual, and returns a collection of Individuals

Below shows an example of a selection operator, which is a simplified version of the tournament_selection() operator:

def tournament_selection(population: List, k: int = 2) -> Iterator:
while True:

choices = random.choices(population, k=k)
best = max(choices)

yield best

(Again, the actual leap_ec.ops.tournament_selection() has checks and docstrings.)

2.3. Detailed Explanations 79

LEAP: Library for Evolutionary Algorithms in Python Documentation, Release v0.9dev

This depicts how a typical selection pipeline operator works. It accepts a population parameter (plus some optional
parameters), and yields the selected individual.

Below is example of a pooling operator:

def pool(next_individual: Iterator, size: int) -> List:
return [next(next_individual) for _ in range(size)]

This accepts an Iterator from which it gets the next individual, and it uses that iterator to accumulate a specified
number of Individuals via a list comprehension. Once the desired number of Individuals is accumulated, the list of
those Individuals is returned.

Currying Function Decorators

Some pipeline operators have user-specified parameters. E.g., leap_ec.ops.pool() has the mandatory size param-
eter. However, given that toolz.pipe() takes functions as parameters, how do we ensure that we pass in functions that
have set parameters?

Normally we would use the Standard Python Library’s functools.partial to set the function parameters and then pass
in the function returned from that call. However, toolz has a convenient function wrapper that does the same thing,
toolz.functools.curry. (See: https://toolz.readthedocs.io/en/latest/api.html#toolz.functoolz.curry) Pipeline operators
that take on user-settable parameters are all wrapped with curry to allow functions with parameters set to be passed
into toolz.pipe().

Operator Class

Most of the pipeline operators are implemented as functions. However, from time to time an operator will need to
persist state between invocations. For generator functions, that comes with using yield in that the next time that
function is invoked the next individual is returned. However, there are some operators that use closures, such as
:py:func:leap_ec.ops.migrate.

In any case, sometimes if one wants persistent state in a pipeline operator a closure or using yield isn’t enough. In
which case, having a class that can have objects that persist state might be useful.

To that end, leap_ec.ops.Operator is an abstract base-class (ABC) that provides a template of sorts for those kinds
of classes. That is, you would write an Operator sub-class that provides a __call__() member function that would allow
objects of that class to be inserted into a LEAP pipeline just like any other operator. Presumably during execution the
internal object state would be continually be updated with book-keeping information as Individuals flow through it in
the pipeline.

leap_ec.ops.CooperativeEvaluate is an example of using this class.

80 Chapter 2. LEAP Concepts

https://toolz.readthedocs.io/en/latest/api.html#toolz.functoolz.curry

LEAP: Library for Evolutionary Algorithms in Python Documentation, Release v0.9dev

Table of Pipeline Operators

Representation Specificity Input -> Output Operator
Representation
Agnostic

Iterator → Iterator clone()
evaluate()
uniform_crossover()
n_ary_crossover()
CooperativeEvaluate

Iterator → population pool()
population → population truncation_selection()

const_evaluate()
insertion_selection()
migrate()

population → Iterator tournament_selection()
naive_cyclic_selection()
cyclic_selection()
random_selection()

Representation Dependent
Dependent

binary_rep Iterator → Iterator mutate_bitflip()
real_rep Iterator → Iterator mutate_gaussian()
int_rep Iterator → Iterator mutate_randint()
segmented_rep Iterator → Iterator apply_mutation()

add_segment()
remove_segment()
copy_segment()

Admittedly it can be confusing when considering the full suite of LEAP pipeline operators, especially in remembering
what kind of operators “connect” to what. With that in mind, the above table breaks down pipeline operators into
different categories. First, there are two broad categories of pipeline operators — operators that don’t care about the
internal representation of Individuals, or “Representation Agnostic” operators; and those operators that do depend
on the internal representation, or “Representation Dependent” operators. Most of the operators are “Representation
Agnostic” in that it doesn’t matter if a given Individual has a genome of bits, real-values, or some other representation.
Only two operators are dependent on representation, and those will be discussed later.

The next category is broken down by what kind of input and output a given operator takes. That is, generally, an operator
takes a population (collection of Individuals) or an Iterator from which a next Individual can be found. Likewise, a
given operator can return a population or yield an Iterator to a next Individual. So, operators that return an Iterator
can be connected to operators that expect an Iterator for input. Similarly, an operator that expects a population can be
connected directly to a collection of Individuals (e.g., be the second argument to toolz.pipe()) or to an operator that
returns a collection of Individuals.

If you are familiar with evolutionary algorithms, most of these connections are just common sense. For example,
selection operators would select from a population.

With regards to “Representation Dependent” operators there currently are only two: leap_ec.binary_rep.
mutate_bitflip() and leap_ec.real_rep.mutate_gaussian(). The former relies on a genome of all bits, and
the latter of real-values. In the future, LEAP will support other representations that will similarly have their own
operators.

Warning: Are all operators really representation agnostic? In reality, most of the operators assume that
Individual.genome is a numpy array, which may not always be the case. For example, the user may come up with a
representation that employs, say, a sparse matrix. In that case, the crossover operators will fail.

2.3. Detailed Explanations 81

LEAP: Library for Evolutionary Algorithms in Python Documentation, Release v0.9dev

In the future we intend on adding support for other popular representations that will show up as LEAP sub-packages.
(I.e., just as binary_rep and real_rep provide support for binary and real-value representations.)

So, in a sense, for where it matters, LEAP currently assumes some sort of sequence for genomes though, again,
plans are afoot to add more representation types. In the interim, you will have to add your own operators to support
new non-sequence genomic representations.

Type-checking Decorator Functions

However, to help minimize the chances that pipeline operators would be mis-used the operators have function decorates
that due parameter type-checking to ensure the correct parameters are being passed in. These are:

iteriter_op
This checks for signatures of type Iterator -> Iterator

listlist_op
Checks for population -> population type operators

listiter_op
Checks for population -> population type operators

iterlist_op
Checks for population -> Iterator type operators

These can be found in leap_ec.ops.

API Documentation

Base operator classes and representation agnostic functions

Fundamental evolutionary operators.

This module provides many of the most important functions that we string together to create EAs out of operator
pipelines. You’ll find many traditional selection and reproduction strategies here, as well as components for classic
algorithms like island models and cooperative coevolution.

Representation-specific operators tend to reside within their own subpackages, rather than here. See for example
leap_ec.real_rep.ops and leap_ec.binary_rep.ops.

class leap_ec.ops.CooperativeEvaluate(num_trials: int, collaborator_selector, log_stream=None,
combine=<function concat_combine>, context={'leap': {'distrib':
{'non_viable': 0}, 'generation': 100}})

Bases: Operator

A simple, non-parallel implementation of cooperative coevolutionary fitness evaluation.

Parameters
• num_trials (int) – the number of combined solutions & fitness estimates to collect when

computing a partial solution’s fitness.

• collaborator_selector – a selection operator that we use to choose individuals from the
other subpopulations to create a combined solution.

• context – the algorithm’s state context. Used to access subpopulation information.

• log_stream – optional file object to collect statistics about combined individuals to.

82 Chapter 2. LEAP Concepts

LEAP: Library for Evolutionary Algorithms in Python Documentation, Release v0.9dev

• combine – the function used to combine partial solutions into combined solutions.

class leap_ec.ops.Crossover(persist_children, p_xover)
Bases: Operator

abstract recombine(parent_a, parent_b)
Perform recombination between two parents to produce two new individuals.

class leap_ec.ops.NAryCrossover(num_points=2, p_xover=1.0, persist_children=False)
Bases: Crossover

Do crossover between individuals between N crossover points.

1 < n < genome length - 1

We also assume that the passed in individuals are clones of parents.

>>> from leap_ec.individual import Individual
>>> from leap_ec.ops import NAryCrossover
>>> import numpy as np

>>> genome1 = np.array([0, 0])
>>> genome2 = np.array([1, 1])
>>> first = Individual(genome1)
>>> second = Individual(genome2)
>>> pop = [first, second]
>>> select = naive_cyclic_selection(pop)

>>> op = NAryCrossover()
>>> result = op(select)

>>> new_first = next(result)
>>> new_second = next(result)

If persist_children is True and there is a child that was made by crossover but isn’t used in the first call, it will be
yielded in a future call.

>>> op = NAryCrossover(p_xover=0.0, persist_children=True)
>>>
>>> next(op(select)) is first # Create an iterator loop with op(select) and␣
→˓consume 1 individual
True
>>> next(op(select)) is second # Create a different iterator loop with op(select)
True

With persist_children set to False, the second child will not be yielded if the iterator is consumed an odd number
of times. Instead, on the next call the loop is started anew.

>>> op = NAryCrossover(p_xover=0.0, persist_children=False)
>>>
>>> next(op(select)) is first # Create an iterator loop with op(select) and␣
→˓consume 1 individual
True
>>> next(op(select)) is second # Create a different iterator loop with op(select)
False

2.3. Detailed Explanations 83

LEAP: Library for Evolutionary Algorithms in Python Documentation, Release v0.9dev

Parameters
• num_points – how many crossing points do we use? Defaults to 2, since 2-point crossover

has been shown to be the least disruptive choice for this value.

• p – the probability that crossover is performed.

• persist_children (bool) – whether unyielded children should persist between calls. This
is useful for leap_ec.distrib.asynchronous.steady_state, where the pipeline may only produce
one individual at a time.

Returns
a pipeline operator that returns two recombined individuals (with probability p), or two unmod-
ified individuals (with probability 1 - p)

recombine(parent_a, parent_b)
Perform recombination between two parents to produce two new individuals.

class leap_ec.ops.Operator

Bases: ABC

Abstract base class that documents the interface for operators in a LEAP pipeline.

LEAP treats operators as functions of two arguments: the population, and a “context” dict that may be used in
some algorithms to maintain some global state or parameters independent of the population.

TODO The above description is outdated. –Siggy TODO Also this is for a population based operator. We also
have operators for individuals

You can inherit from this class to define operators as classes. Classes support operators that take extra arguments
at construction time (such as a mutation rate) and maintain some internal private state, and they allow certain
special patterns (such as multi-function operators).

But inheriting from this class is optional. LEAP can treat any callable object that takes two parameters as an
operator. You may define your custom operators as closures (which also allow for construction-time arguments
and internal state), as simple functions (when no additional arguments are necessary), or as curried functions (
i.e. with the help of toolz.curry(. . .).

class leap_ec.ops.UniformCrossover(p_swap: float = 0.2, p_xover: float = 1.0, persist_children=False)
Bases: Crossover

Parameterized uniform crossover iterates through two parents’ genomes and swaps each of their genes with the
given probability.

In a classic paper, De Jong and Spears showed that this operator works particularly well when the swap probability
p_swap is set to about 0.2. LEAP thus uses this value as its default.

De Jong, Kenneth A., and W. Spears. “On the virtues of parameterized uniform crossover.” Pro-
ceedings of the 4th international conference on genetic algorithms. Morgan Kaufmann Publishers,
1991.

>>> from leap_ec.individual import Individual
>>> from leap_ec.ops import UniformCrossover, naive_cyclic_selection
>>> import numpy as np

>>> genome1 = np.array([0, 0])
>>> genome2 = np.array([1, 1])
>>> first = Individual(genome1)
>>> second = Individual(genome2)
>>> pop = [first, second]

(continues on next page)

84 Chapter 2. LEAP Concepts

LEAP: Library for Evolutionary Algorithms in Python Documentation, Release v0.9dev

(continued from previous page)

>>> select = naive_cyclic_selection(pop)
>>> op = UniformCrossover()
>>> result = op(select)
>>> new_first = next(result)
>>> new_second = next(result)

The probability can be tuned via the p_swap parameter: >>> op = UniformCrossover(p_swap=0.1) >>> result =
op(select)

If persist_children is True and there is a child that was made by crossover but isn’t used in the first call, it will be
yielded in a future call.

>>> op = UniformCrossover(p_xover=0.0, persist_children=True)
>>>
>>> next(op(select)) is first # Create an iterator loop with op(select) and␣
→˓consume 1 individual
True
>>> next(op(select)) is second # Create a different iterator loop with op(select)
True

With persist_children set to False, the second child will not be yielded if the iterator is consumed an odd number
of times. Instead, on the next call the loop is started anew.

>>> op = UniformCrossover(p_xover=0.0, persist_children=False)
>>>
>>> next(op(select)) is first # Create an iterator loop with op(select) and␣
→˓consume 1 individual
True
>>> next(op(select)) is second # Create a different iterator loop with op(select)
False

Parameters
• p_swap – how likely are we to swap each pair of genes when crossover is performed

• p_xover (float) – the probability that crossover is performed in the first place

• persist_children (bool) – whether unyielded children should persist between calls. This
is useful for leap_ec.distrib.asynchronous.steady_state, where the pipeline may only produce
one individual at a time.

Returns
a pipeline operator that returns two recombined individuals (with probability p_xover), or two
unmodified individuals (with probability 1 - p_xover)

recombine(parent_a, parent_b)
Perform recombination between two parents to produce two new individuals.

leap_ec.ops.clone(next_individual: Iterator = '__no__default__')→ Iterator
clones and returns the next individual in the pipeline

The clone’s fitness is set to None, its parents are set to the individual from which it was cloned (i.e., the parent),
and it is assigned its own UUID.

>>> from leap_ec.individual import Individual
>>> import numpy as np

2.3. Detailed Explanations 85

LEAP: Library for Evolutionary Algorithms in Python Documentation, Release v0.9dev

Create a common decoder and problem for individuals.

>>> genome = np.array([1, 1])
>>> original = Individual(genome)

>>> cloned_generator = clone(iter([original]))

Parameters
next_individual – iterator for next individual to be cloned

Returns
copy of next_individual

leap_ec.ops.compute_expected_probability(expected_num_mutations: float, individual_genome: List)→
float

Computed the probability of mutation based on the desired average expected mutation and genome length.

The equation here is 𝑝 = 1/𝐿 *

Parameters
• expected_num_mutations – times individual is to be mutated on average
• individual_genome – genome for which to compute the probability

Returns
the corresponding probability of mutation

leap_ec.ops.compute_population_values(population: ~typing.List, offset=0, exponent: int = 1,
key=<function <lambda>>)→ ndarray

Returns a list of values where the zero-point of the population is shifted and the values are scaled by exponenti-
ation.

Parameters
• population – the population to compute values from.

• offset – the offset from zero. Specifying offset=’pop-min’ will use the population’s mini-
mum value as the new zero-point. Defaults to 0.

• exponent (int) – the power to which values are raised to. Defaults to 1.

• key – a function that computes a metric based on an Individual.

Returns
a numpy array of values that have been shifted by offset and scaled by exponent corresponding
to each individual in the population.

leap_ec.ops.concat_combine(collaborators)
Combine a list of individuals by concatenating their genomes.

You can choose whether this or some other function is used for combining collaborators by passing it into the
CooperativeEvaluate constructor.

leap_ec.ops.const_evaluate(population: List = '__no__default__', value='__no__default__')→ List
An evaluator that assigns a constant fitness to every individual.

This ignores the Problem associated with each individual for the purpose of assigning a constant fitness.

This is useful for algorithms that need to assign an arbitrary initial fitness value before using their normal eval-
uation method. Some forms of cooperative coevolution are an example.

86 Chapter 2. LEAP Concepts

LEAP: Library for Evolutionary Algorithms in Python Documentation, Release v0.9dev

leap_ec.ops.cyclic_selection(population: List = '__no__default__')→ Iterator
Deterministically returns individuals in order, then shuffles the test_sequence, returns the individuals in that new
order, and repeats this process.

>>> from leap_ec.individual import Individual
>>> from leap_ec.ops import cyclic_selection
>>> import numpy as np

>>> pop = [Individual(np.array([0, 0])),
... Individual(np.array([0, 1]))]

>>> cyclic_selector = cyclic_selection(pop)

Parameters
population – from which to select

Returns
the next selected individual

leap_ec.ops.elitist_survival(offspring: List = '__no__default__', parents: List = '__no__default__', k: int =
1, key=None)→ List

This allows k best parents to compete with the offspring.

>>> from leap_ec.individual import Individual
>>> from leap_ec.binary_rep.problems import MaxOnes
>>> import numpy as np

First, let’s make a “pretend” population of parents using the MaxOnes problem.

>>> pretend_parents = [Individual(np.array([0, 0, 0]), problem=MaxOnes()),
... Individual(np.array([1, 1, 1]), problem=MaxOnes())]

Then a “pretend” population of offspring. (Pretend in that we’re pretending that the offspring came
from the parents.)

>>> pretend_offspring = [Individual(np.array([0, 0, 0]), problem=MaxOnes()),
... Individual(np.array([1, 1, 0]), problem=MaxOnes()),
... Individual(np.array([1, 0, 1]), problem=MaxOnes()),
... Individual(np.array([0, 1, 1]), problem=MaxOnes()),
... Individual(np.array([0, 0, 1]), problem=MaxOnes())]

We need to evaluate them to get their fitness to sort them for elitist_survival.

>>> pretend_parents = Individual.evaluate_population(pretend_parents)
>>> pretend_offspring = Individual.evaluate_population(pretend_offspring)

This will take the best parent, which has [1,1,1], and replace the worst offspring, which has [0,0,0]
(because this is the MaxOnes problem) >>> survivors = elitist_survival(pretend_offspring, pre-
tend_parents)

>>> assert pretend_parents[1] in survivors # yep, best parent is there
>>> assert pretend_offspring[0] not in survivors # worst guy isn't

We orginally ordered 5 offspring, so that’s what we better have. >>> assert len(survivors) == 5

2.3. Detailed Explanations 87

LEAP: Library for Evolutionary Algorithms in Python Documentation, Release v0.9dev

Please note that the literature has a number of variations of elitism and other forms of overlapping
generations. For example, this may be a good starting point:

De Jong, Kenneth A., and Jayshree Sarma. “Generation gaps revisited.” In Foundations of genetic
algorithms, vol. 2, pp. 19-28. Elsevier, 1993.

Parameters
• offspring – list of created offpring, probably from pool()

• parents – list of parents, usually the ones that offspring came from

• k – how many elites from parents to keep?

• key – optional key criteria for selecting; e.g., can be used to impose parsimony pressure

Returns
surviving population, which will be offspring with offspring replaced by any superior parent
elites

leap_ec.ops.evaluate(next_individual: Iterator = '__no__default__')→ Iterator
Evaluate and returns the next individual in the pipeline

>>> from leap_ec.individual import Individual
>>> from leap_ec.decoder import IdentityDecoder
>>> from leap_ec.binary_rep.problems import MaxOnes
>>> import numpy as np

We need to specify the decoder and problem so that evaluation is possible.

>>> genome = np.array([1, 1])
>>> ind = Individual(genome, decoder=IdentityDecoder(), problem=MaxOnes())

>>> evaluated_ind = next(evaluate(iter([ind])))

Parameters
• next_individual – iterator pointing to next individual to be evaluated

• kwargs – contains optional context state to pass down the pipeline in context dictionaries

Returns
the evaluated individual

leap_ec.ops.grouped_evaluate(population: list = '__no__default__', max_individuals_per_chunk: int =
None)→ list

Evaluate the population by sending groups of multiple individuals to a fitness function so they can be evaluated
simultaneously.

This is useful, for example, as a way to evaluate individuals in parallel on a GPU.

leap_ec.ops.insertion_selection(offspring: List = '__no__default__', parents: List = '__no__default__',
key=None)→ List

do exclusive selection between offspring and parents

This is typically used for Ken De Jong’s EV algorithm for survival selection. Each offspring is deterministically
selected and a random parent is selected; if the offspring wins, then it replaces the parent.

Note that we make a _copy_ of the parents and have the offspring compete with the parent copies so that users
can optionally preserve the original parents. You may wish to do that, for example, if you want to analyze the
composition of the original parents and the modified copy.

88 Chapter 2. LEAP Concepts

LEAP: Library for Evolutionary Algorithms in Python Documentation, Release v0.9dev

Parameters
• offspring – population to select from

• parents – parents that are copied and which the copies are potentially updated with better
offspring

• key – optional key for determining max() by other criteria such as for parsimony pressure

Returns
the updated parent population

leap_ec.ops.iteriter_op(f)
This decorator wraps a function with runtime type checking to ensure that it always receives an iterator as its first
argument, and that it returns an iterator.

We use this to make debugging operator pipelines easier in EAs: if you accidentally hook up, say an operator
that outputs a list to an operator that expects an iterator, we’ll throw an exception that pinpoints the issue.

Parameters
function (f) – the function to wrap

leap_ec.ops.iterlist_op(f)
This decorator wraps a function with runtime type checking to ensure that it always receives an iterator as its first
argument, and that it returns a list.

We use this to make debugging operator pipelines easier in EAs: if you accidentally hook up, say an operator
that outputs a list to an operator that expects an iterator, we’ll throw an exception that pinpoints the issue.

Parameters
function (f) – the function to wrap

leap_ec.ops.listiter_op(f)
This decorator wraps a function with runtime type checking to ensure that it always receives a list as its first
argument, and that it returns an iterator.

We use this to make debugging operator pipelines easier in EAs: if you accidentally hook up, say an operator
that outputs an iterator to an operator that expects a list, we’ll throw an exception that pinpoints the issue.

Parameters
function (f) – the function to wrap

leap_ec.ops.listlist_op(f)
This decorator wraps a function with runtime type checking to ensure that it always receives a list as its first
argument, and that it returns a list.

We use this to make debugging operator pipelines easier in EAs: if you accidentally hook up, say an operator
that outputs an iterator to an operator that expects a list, we’ll throw an exception that pinpoints the issue.

Parameters
function (f) – the function to wrap

leap_ec.ops.migrate(topology, emigrant_selector, replacement_selector, migration_gap,
customs_stamp=<function <lambda>>, metric=None, context={'leap': {'distrib':
{'non_viable': 0}, 'generation': 100}})

A migration operator for use in island models.

This operator works with multi-population algorithms, and is thus meant to used with leap_ec.algorithm.
multi_population_ea.

Specifically, it assumes that

2.3. Detailed Explanations 89

LEAP: Library for Evolutionary Algorithms in Python Documentation, Release v0.9dev

1. the population argument passed into the returned function is a particular sub-population that we want to
process “emigration” out of and “immigration” into,

2. the context state object contains an integer field context[‘leap’][‘generation’] indicating the current gener-
ation count of the algorithm, and

3. the context also contains a integer field context[‘leap’][‘current_subpopulation’] indicating the index of
the subpopulation that is currently being processed in the overall collection of subpopulations (i.e. the one
that population belongs to).

These assumptions are essentially what leap_ec.algorithm.multi_population_ea implements.

>>> import networkx as nx
>>> from leap_ec import ops, context
>>> from leap_ec.data import test_population
>>> pop0 = test_population[:] # Shallow copy
>>> pop1 = test_population[:]

>>> op = migrate(topology=nx.complete_graph(2),
... emigrant_selector=ops.tournament_selection,
... replacement_selector=ops.random_selection,
... migration_gap=50)
>>> context['leap']['generation'] = 0
>>> context['leap']['current_subpopulation'] = 0
>>> op(pop0)
[Individual<...>(...), Individual<...>(...), Individual<...>(...), Individual<...>(.
→˓..)]

>>> context['leap']['current_subpopulation'] = 1
>>> op(pop1)
[Individual<...>(...), Individual<...>(...), Individual<...>(...), Individual<...>(.
→˓..)]

This operator is a stateful closure: it maintains an internal list of all the out-going “emigrations” that occurred
in the previous time step, so that it can process them as “immigrations” in the current time step.

Parameters
• topology – a networkx topology defining the connectivity among islands

• emigrant_selector – a selection operator for choosing individuals to leave an island

• replacement_selector – a selection operator choosing contestants that will be replaced
by an incoming immigrant if the immigrant has higher fitness

• migration_gap (int) – migration will occur regularly after every migration_gap evolu-
tionary steps

• customs_stamp – an optional function to transfrom an individual upon its arrival to a new
island. This can be used, for example, to change the individual’s decoder or problem in a
heterogeneous island model.

• metric – an optional function of the form f(generation, immigrant_individual, contes-
tant_indidivudal, success) for recording information about migration events.

• context – the context object to check for EA state, such as the current generation number,
and the ID of the subpopulation that is currently being processed.

90 Chapter 2. LEAP Concepts

LEAP: Library for Evolutionary Algorithms in Python Documentation, Release v0.9dev

leap_ec.ops.migration_metric(stream, header: bool = True, notes: Optional[dict] = None)
Returns a function that can be used to record migration events.

The purpose of a migration metric is to record information about migrations that occur inside a migration oper-
ator. Because these events take place inside the operator (rather than across operators), they cannot be recorded
by a LEAP pipeline probe.

In general, the interface for a migration metric function takes four parameters:

• generation: the current generation

• immigrant_ind: the individual that is attempting to migrate

• contestant_ind: the individual that has been chosen to be replaced

• success: True if the migration is successful, False otherwise

The metric included here records the fitness of both individuals and writes them (along with the generation and
success values) to a CSV. You can write your own metric if you need to record other information (such as, say,
genomes).

>>> import sys
>>> from leap_ec import Individual
>>> from leap_ec.binary_rep.problems import MaxOnes
>>> m = migration_metric(sys.stdout,
... header=True,
... notes={'run': 0, 'description': 'Test output'}
...)
run,description,generation,migrant_fitness,contestant_fitness,success

>>> ind1 = Individual(np.array([1, 1, 1]), problem=MaxOnes())
>>> f = ind1.evaluate()
>>> contestant = Individual(np.array([0, 1, 1]), problem=MaxOnes())
>>> f = contestant.evaluate()
>>> m(0, ind1, contestant, True)
0,Test output,0,3,2,True

Parameters
• stream – file object to write the CSV data to

• header (bool) – a CSV header will be written if True

• notes (dict) – a dict specifying additional constant-value columns to include in the CSV
output

leap_ec.ops.naive_cyclic_selection(population: List = '__no__default__', indices: List = None)→ Iterator
Deterministically returns individuals, and repeats the same test_sequence when exhausted.

This is “naive” because it doesn’t shuffle the population between complete tours to minimize bias.

>>> from leap_ec.individual import Individual
>>> from leap_ec.ops import naive_cyclic_selection
>>> import numpy as np

>>> pop = [Individual(np.array([0, 0])),
... Individual(np.array([0, 1]))]

2.3. Detailed Explanations 91

LEAP: Library for Evolutionary Algorithms in Python Documentation, Release v0.9dev

>>> cyclic_selector = naive_cyclic_selection(pop)

Parameters
population – from which to select

Returns
the next selected individual

leap_ec.ops.pool(next_individual: Iterator = '__no__default__', size: int = '__no__default__')→ List
‘Sink’ for creating size individuals from preceding pipeline source.

Allows for “pooling” individuals to be processed by next pipeline operator. Typically used to collect offspring
from preceding set of selection and birth operators, but could also be used to, say, “pool” individuals to be passed
to an EDA as a training set.

>>> from leap_ec.individual import Individual
>>> from leap_ec.ops import naive_cyclic_selection
>>> import numpy as np

>>> pop = [Individual(np.array([0, 0])),
... Individual(np.array([0, 1]))]

>>> cyclic_selector = naive_cyclic_selection(pop)

>>> pool = pool(cyclic_selector, 3)

print(pool) [Individual([0, 0], None, None), Individual([0, 1], None, None), Individual([0, 0], None, None)]

Parameters
• next_individual – generator for getting the next offspring

• size – how many kids we want

Returns
population of size offspring

leap_ec.ops.proportional_selection(population: ~typing.List = '__no__default__', offset=0, exponent: int =
1, key=<function <lambda>>)→ Iterator

Returns an individual from a population in direct proportion to their fitness or another given metric.

To deal with negative fitness values use offset=’pop-min’ or set a custom offset. A ValueError is thrown if the
result of adding offset to a fitness value results in a negative number. The value of an individual is calculated as
follows

value = (fitness + offset)^exponent

Parameters
• population – the population to select from. Should be a list, not an iterator.

• offset – the offset from zero. If negative fitness values are possible and the minimum is
unknown use offest=’pop-min’ for an adaptive offset. Defaults to 0.

• exponent (int) – the power to which fitness values are raised to. This can be tuned to
increase or decrease selection pressure by creating larger or smaller differences between
fitness values in the population. Defaults to 1.

• key – a function that computes the metric used to compare individuals. Defaults to fitness.

92 Chapter 2. LEAP Concepts

LEAP: Library for Evolutionary Algorithms in Python Documentation, Release v0.9dev

Returns
a random individual based on the proportion of the given metric in the population.

>>> from leap_ec import Individual
>>> from leap_ec.binary_rep.problems import MaxOnes
>>> from leap_ec.ops import proportional_selection
>>> import numpy as np

>>> genome1 = np.array([0, 0, 0])
>>> genome2 = np.array([0, 0, 1])
>>> pop = [Individual(genome1, problem=MaxOnes()),
... Individual(genome2, problem=MaxOnes())]
>>> pop = Individual.evaluate_population(pop)
>>> selected = proportional_selection(pop)

leap_ec.ops.random_bernoulli_vector(shape: Union[int, Tuple], p: float = 0.5)→ ndarray
Generates a random vector of Boolean balues from a Bernoulli process—that is, from a sequence of weighted
coin flips.

We use this function throughout LEAP because its implementation was found to be much faster than, say, just
calling np.random.choice([0, 1]).

>>> from leap_ec.ops import random_bernoulli_vector
>>> random_bernoulli_vector(5, p=0.4)
array([..., ..., ..., ..., ...])

Parameters
• shape – shape of the random vector—can be an integer or a tuple.

• p – success probability of the bernoulli trials.

Returns
boolean numpy array

leap_ec.ops.random_selection(population: List = '__no__default__', indices=None)→ Iterator
return a uniformly randomly selected individual from the population

Parameters
population – from which to select

Returns
a uniformly selected individual

leap_ec.ops.sus_selection(population: ~typing.List = '__no__default__', n=None, shuffle: bool = True,
offset=0, exponent: int = 1, key=<function <lambda>>)→ Iterator

Returns an individual from a population in proportion to their fitness or another given metric using the stochastic
universal sampling algorithm.

To deal with negative fitness values use offset=’pop-min’ or set a custom offset. A ValueError is thrown if the
result of adding offset to a fitness value results in a negative number. The value of an individual is calculated as
follows

value = (fitness + offset)^exponent

Parameters
• population – the population to select from. Should be a list, not an iterator.

2.3. Detailed Explanations 93

LEAP: Library for Evolutionary Algorithms in Python Documentation, Release v0.9dev

• n – the number of evenly spaced points to use in the algorithm. Default is None which uses
len(population).

• shuffle (bool) – if True, n points are resampled after one full pass over them. If False,
selection repeats over the same n points. Defaults to True.

• offset – the offset from zero. If negative fitness values are possible and the minimum is
unknown use offset=’pop-min’ for an adaptive offset. Defaults to 0.

• exponent (int) – the power to which fitness values are raised to. This can be tuned to
increase or decrease selection pressure by creating larger or smaller differences between
fitness values in the population. Defaults to 1.

• key – a function that computes the metric used to compare individuals. Defaults to fitness.

Returns
a random individual based on the proportion of the given metric in the population.

>>> from leap_ec import Individual
>>> from leap_ec.binary_rep.problems import MaxOnes
>>> from leap_ec.ops import sus_selection
>>> import numpy as np

>>> genome1 = np.array([0, 0, 0])
>>> genome2 = np.array([1, 1, 1])
>>> pop = [Individual(genome1, problem=MaxOnes()),
... Individual(genome2, problem=MaxOnes())]
>>> pop = Individual.evaluate_population(pop)
>>> selected = sus_selection(pop)

leap_ec.ops.tournament_selection(population: list = '__no__default__', k: int = 2, key=None, select_worst:
bool = False, indices=None)→ Iterator

Returns an operator that selects the best individual from k individuals randomly selected from the given popula-
tion.

Like other selection operators, this assumes that if one individual is “greater than” another, then it is “better
than” the other. Whether this indicates maximization or minimization isn’t handled here: the Individual class
determines the semantics of its “greater than” operator.

Parameters
• population – the population to select from. Should be a list, not an iterator.

• k (int) – number of contestants in the tournament. k=2 does binary tournament selection,
which approximates linear ranking selection in the expectation. Higher values of k yield
greedier selection strategies—k=3, for instance, is equal to quadratic ranking selection in the
expectation.

• key – an optional function that computes keys to sort over. Defaults to None, in which case
Individuals are compared directly.

• select_worst (bool) – if True, select the worst individual from the tournament instead of
the best.

• indices (list) – an optional list that will be populated with the index of the selected indi-
vidual.

Returns
the best of k individuals drawn from population

94 Chapter 2. LEAP Concepts

LEAP: Library for Evolutionary Algorithms in Python Documentation, Release v0.9dev

>>> from leap_ec import Individual
>>> from leap_ec.binary_rep.problems import MaxOnes
>>> from leap_ec.ops import tournament_selection
>>> import numpy as np

>>> pop = [Individual(np.array([0, 0, 0]), problem=MaxOnes()),
... Individual(np.array([0, 0, 1]), problem=MaxOnes())]
>>> pop = Individual.evaluate_population(pop)
>>> best = tournament_selection(pop)

leap_ec.ops.truncation_selection(offspring: List = '__no__default__', size: int = '__no__default__',
parents: List = None, key=None)→ List

return the size best individuals from the given population

This defaults to (mu, lambda) if parents is not given.

>>> from leap_ec.individual import Individual
>>> from leap_ec.binary_rep.problems import MaxOnes
>>> from leap_ec.ops import truncation_selection
>>> import numpy as np

>>> pop = [Individual(np.array([0, 0, 0]), problem=MaxOnes()),
... Individual(np.array([0, 0, 1]), problem=MaxOnes()),
... Individual(np.array([1, 1, 0]), problem=MaxOnes()),
... Individual(np.array([1, 1, 1]), problem=MaxOnes())]

We need to evaluate them to get their fitness to sort them for truncation.

>>> pop = Individual.evaluate_population(pop)

>>> truncated = truncation_selection(pop, 2)

TODO Do we want an optional context to over-ride the ‘parents’ parameter?

Parameters
• offspring – offspring to truncate down to a smaller population

• size – is what to resize population to

• second_population – is optional parent population to include with population for down-
sizing

Returns
truncated population

2.3. Detailed Explanations 95

LEAP: Library for Evolutionary Algorithms in Python Documentation, Release v0.9dev

Pipeline operators for binary representations

Binary representation specific pipeline operators.

leap_ec.binary_rep.ops.genome_mutate_bitflip(genome: ndarray = '__no__default__',
expected_num_mutations: float = None, probability: float
= None)→ ndarray

Perform bitflip mutation on a particular genome.

This function can be used by more complex operators to mutate a full population (as in mutate_bitflip), to work
with genome segments (as in leap_ec.segmented.ops.apply_mutation), etc. This way we don’t have to copy-and-
paste the same code for related operators.

Parameters
• genome – of binary digits that we will be mutating

• expected_num_mutations – on average how many mutations are we expecting?

Returns
mutated genome

leap_ec.binary_rep.ops.mutate_bitflip(next_individual: Iterator = '__no__default__',
expected_num_mutations: float = None, probability: float = None)
→ Iterator

Perform bit-flip mutation on each individual in an iterator (population).

This assumes that the genomes have a binary representation.

>>> from leap_ec.individual import Individual
>>> from leap_ec.binary_rep.ops import mutate_bitflip
>>> import numpy as np

>>> original = Individual(np.array([1, 1]))
>>> op = mutate_bitflip(expected_num_mutations=1)
>>> pop = iter([original])
>>> mutated = next(op(pop))

Parameters
• next_individual – to be mutated

• expected_num_mutations – on average how many mutations done (specificy either this
or probability, but not both)

• probability – the probability of mutating any given gene (specificy either this or ex-
pected_num_mutations, but not both)

Returns
mutated individual

leap_ec.binary_rep.ops.random()→ x in the interval [0, 1).

96 Chapter 2. LEAP Concepts

LEAP: Library for Evolutionary Algorithms in Python Documentation, Release v0.9dev

Pipeline operators for real-valued representations

Pipeline operators for real-valued representations

leap_ec.real_rep.ops.apply_hard_bounds(genome, hard_bounds)
A helper that ensures that every gene is contained within the given bounds.

Parameters
• genome – list of values to apply bounds to.

• hard_bounds – if a (low, high) tuple, the same bounds will be used for every gene. If a list
of tuples is given, then the ith bounds will be applied to the ith gene.

Both sides of the range are inclusive:

>>> genome = np.array([0, 10, 20, 30, 40, 50])
>>> apply_hard_bounds(genome, hard_bounds=(20, 40))
array([20, 20, 20, 30, 40, 40])

Different bounds can be used for each locus by passing in a list of tuples:

>>> bounds= [(0, 1), (0, 1), (50, 100), (50, 100), (0, 100), (0, 10)]
>>> apply_hard_bounds(genome, hard_bounds=bounds)
array([0, 1, 50, 50, 40, 10])

leap_ec.real_rep.ops.genome_mutate_gaussian(genome='__no__default__', std: float = '__no__default__',
expected_num_mutations='__no__default__', bounds:
Tuple[float, float] = (-inf, inf), transform_slope: float = 1.0,
transform_intercept: float = 0.0)

Perform Gaussian mutation directly on real-valued genes (rather than on an Individual).

This used to be inside mutate_gaussian, but was moved outside it so that leap_ec.segmented.ops.apply_mutation
could directly use this function, thus saving us from doing a copy-n-paste of the same code to the segmented
sub-package.

Parameters
• genome – of real-valued numbers that will potentially be mutated

• std – the mutation width—either a single float that will be used for all genes, or a list of
floats specifying the mutation width for each gene individually.

• expected_num_mutations – on average how many mutations are expected

Returns
mutated genome

leap_ec.real_rep.ops.mutate_gaussian(next_individual: Iterator = '__no__default__',
std='__no__default__', expected_num_mutations: Union[int, str] =
None, bounds=(-inf, inf), transform_slope: float = 1.0,
transform_intercept: float = 0.0)→ Iterator

Mutate and return an Individual with a real-valued representation.

This operators on an iterator of Individuals:

>>> from leap_ec.individual import Individual
>>> from leap_ec.real_rep.ops import mutate_gaussian
>>> import numpy as np
>>> pop = iter([Individual(np.array([1.0, 0.0]))])

2.3. Detailed Explanations 97

LEAP: Library for Evolutionary Algorithms in Python Documentation, Release v0.9dev

Mutation can either use the same parameters for all genes:

>>> op = mutate_gaussian(std=1.0, expected_num_mutations='isotropic', bounds=(-5,␣
→˓5))
>>> mutated = next(op(pop))

Or we can specify the std and bounds independently for each gene:

>>> pop = iter([Individual(np.array([1.0, 0.0]))])
>>> op = mutate_gaussian(std=[0.5, 1.0],
... expected_num_mutations='isotropic',
... bounds=[(-1, 1), (-10, 10)]
...)
>>> mutated = next(op(pop))

Parameters
• next_individual – to be mutated

• std – standard deviation to be equally applied to all individuals; this can be a scalar value
or a “shadow vector” of standard deviations

• expected_num_mutations – if an int, the expected number of mutations per individual,
on average. If ‘isotropic’, all genes will be mutated.

• bounds – to clip for mutations; defaults to (- ∞, ∞)

Returns
a generator of mutated individuals.

Pipeline operators for segmented representations

Segmented representation specific pipeline operators.

leap_ec.segmented_rep.ops.add_segment(next_individual: Iterator = '__no__default__', seq_initializer:
Callable = '__no__default__', probability: float =
'__no__default__', append: bool = False)→ Iterator

Possibly add a segment to the given individual

New segments can be always appended, or randomly inserted within the individual’s genome.

TODO add a parameter for accepting a function that will yield a distribution for the number of segments to be
randomly inserted.

>>> from leap_ec.individual import Individual
>>> from leap_ec.binary_rep.initializers import create_binary_sequence
>>> import numpy as np
>>> original = Individual([np.array([0, 0]), np.array([1, 1])])
>>> mutated = next(add_segment(iter([original]),
... seq_initializer=create_binary_sequence(2),
... probability=1.0))

Parameters
• next_individual – to possibly add a segment

• seq_initializer – callable for initializing any new segments

98 Chapter 2. LEAP Concepts

LEAP: Library for Evolutionary Algorithms in Python Documentation, Release v0.9dev

• probability – likelihood of adding a segment

• append – if True, always append any new segments

Returns
yielded individual with a possible new segment

leap_ec.segmented_rep.ops.apply_mutation(next_individual: Iterator = '__no__default__', mutator:
Callable[[list, float], list] = '__no__default__')→ Iterator

This expects next_individual to have a segmented representation; i.e., a test_sequence of sequences. mutator
will be applied separately to each sub-test_sequence.

>>> from leap_ec.binary_rep.ops import genome_mutate_bitflip
>>> mutation_op = apply_mutation(
... mutator=genome_mutate_bitflip(
... expected_num_mutations=0.5
...))
>>> import numpy as np

>>> from leap_ec.individual import Individual
>>> original = Individual(np.array([[0, 0], [1, 1]]))
>>> mutated = next(mutation_op(iter([original])))

Parameters
• next_individual – to possibly mutate

• mutator – function to be applied to each segment in the individual’s genome; first argument
is a segment, the second the expected probability of mutating each segment element.

Returns
yielded mutated individual

leap_ec.segmented_rep.ops.copy_segment(next_individual: Iterator = '__no__default__', probability: float =
'__no__default__', append: bool = False)→ Iterator

with a given probability, randomly select and copy a segment

>>> from leap_ec.individual import Individual
>>> import numpy as np
>>> original = Individual([np.array([0, 0])])
>>> mutated = next(copy_segment(iter([original]), probability=1.0))
>>> assert np.all(mutated.genome[0] == [0, 0]) and np.all(mutated.
→˓genome[1] == [0, 0])

param next_individual
to have a segment possibly removed

param probability
likelihood of doing this

param append
if True, always append any new segments

returns
the next individual

2.3. Detailed Explanations 99

LEAP: Library for Evolutionary Algorithms in Python Documentation, Release v0.9dev

leap_ec.segmented_rep.ops.remove_segment(next_individual: Iterator = '__no__default__', probability:
float = '__no__default__')→ Iterator

for some chance, remove a segment

Nothing happens if the individual has a single segment; i.e., there is no chance for an empty individual
to be returned.

>>> from leap_ec.individual import Individual
>>> import numpy as np
>>> original = Individual([np.array([0, 0]), np.array([1, 1])])
>>> mutated = next(remove_segment(iter([original]), probability=1.0))
>>> assert np.all(mutated.genome[0] == [0, 0]) or np.all(mutated.
→˓genome[0] == [1, 1])

param next_individual
to have a segment possibly removed

param probability
likelihood of removing a segment

returns
the next individual

leap_ec.segmented_rep.ops.segmented_mutate(next_individual: Iterator = '__no__default__',
mutator_functions: list = '__no__default__')

A mutation operator that applies a different mutation operator to each segment of a segmented genome.

2.3.6 Context

From time to time pipeline operators need to consult some sort of state such as the current generation. E.g., ops.migrate
uses the context to track subpopulations.

context is found in leap_ec.context and is just a dictionary. The default element, leap, is reserved for LEAP data.

Summary of current leap_ec.context reserved state:

• context[‘leap’] is for storing general LEAP running state, such as current
generation.

• context[‘leap’][‘distributed’] is for storing leap.distributed running state

• context[‘leap’][‘distributed’][‘non_viable’] accumulates counts of non-viable
individuals during distributed.eval_pool() and distributed.async_eval_pool() runs.

2.3.7 Probes

Probes are special pipeline operators that can be used to echo state of passing individuals or other data. For example,
you might want to print the state of an individual with two probes, one before a mutation operator is applied, and another
afterwards to observe the effects of mutation.

These are probes do more than passive reporting of data that passes through the pipeline – they actually do some data
processing and report that.

Probes are pipeline operators to instrument state that passes through the pipeline such as populations or individuals.

100 Chapter 2. LEAP Concepts

LEAP: Library for Evolutionary Algorithms in Python Documentation, Release v0.9dev

class leap_ec.probe.AttributesCSVProbe(attributes=(), stream=<_io.TextIOWrapper name='<stdout>'
mode='w' encoding='UTF-8'>, do_dataframe=False,
best_only=False, header=True, do_fitness=False,
do_genome=False, notes=None, extra_metrics=None, job=None,
numpy_as_list=True, context={'leap': {'distrib': {'non_viable':
0}, 'generation': 100}})

An operator that records the specified attributes for all the individuals (or just the best individual) in population
in CSV-format to the specified stream and/or to a DataFrame.

Parameters
• attributes – list of attribute names to record, as found in the individuals’ attributes field

• stream – a file object to write the CSV rows to (defaults to sys.stdout). Can be None if you
only want a DataFrame

• do_dataframe (bool) – if True, data will be collected in memory as a Pandas DataFrame,
which can be retrieved by calling the dataframe property after (or during) the algorithm run.
Defaults to False, since this can consume a lot of memory for long-running algorithms.

• best_only (bool) – if True, attributes will only be recorded for the best-fitness individual;
otherwise a row is recorded for every individual in the population

• header (bool) – if True (the default), a CSV header is printed as the first row with the
column names

• do_fitness (bool) – if True, the individuals’ fitness is included as one of the columns

• do_genomes (bool) – if True, the individuals’ genome is included as one of the columns

• notes (str) – a dict of optional constant-value columns to include in all rows (ex. to identify
and experiment or parameters)

• extra_metrics – a dict of ‘column_name’: function pairs, to compute optional extra
columns. The functions take a the population as input as a list of individuals, and their
return value is printed in the column.

• job (int) – a job ID that will be included as a constant-value column in all rows (ex. typically
an integer, indicating the ith run out of many)

• numpy_as_list (bool) – if True, numpy arrays will be first converted to a python list before
printing. This is intended for large genomes and multiobjective fitnesses, where large numpy
arrays would be split across multiple csv rows by the default formatter.

• context – the algorithm context we use to read the current generation from (so we can write
it to a column)

Individuals contain some build-in attributes (namely fitness, genome), and also a dict of additional custom at-
tributes called, well, attributes. This class allows you to log all of the above.

Most often, you will want to record only the best individual in the population at each step, and you’ll just want
to know its fitness and genome. You can do this with this class’s boolean flags. For example, here’s how you’d
record the best individual’s fitness and genome to a dataframe:

>>> from leap_ec.global_vars import context
>>> from leap_ec.data import test_population
>>> probe = AttributesCSVProbe(do_dataframe=True, best_only=True,
... do_fitness=True, do_genome=True)
>>> context['leap']['generation'] = 100
>>> probe(test_population) == test_population
True

2.3. Detailed Explanations 101

LEAP: Library for Evolutionary Algorithms in Python Documentation, Release v0.9dev

You can retrieve the result programatically from the dataframe property:

>>> probe.dataframe
step fitness genome

0 100 4 [0, 1, 1, 1, 1]

By default, the results are also written to sys.stdout. You can pass any file object you like into the stream param-
eter.

Another common use of this task is to record custom attributes that are stored on individuals in certain kinds
of experiments. Here’s how you would record the values of ind.foo and ind.bar for every individual in the
population. We write to a stream object this time to demonstrate how to use the probe without a dataframe:

>>> import io
>>> stream = io.StringIO()
>>> probe = AttributesCSVProbe(attributes=['foo', 'bar'], stream=stream)
>>> context['leap']['generation'] = 100
>>> r = probe(test_population)
>>> print(stream.getvalue())
step,foo,bar
100,GREEN,Colorless
100,15,green
100,BLUE,ideas
100,72.81,sleep

property dataframe

Property for retrieving a Pandas DataFrame representation of the collected data.

get_row_dict(ind)
Compute a full row of data from a given individual.

class leap_ec.probe.BestSoFarIterProbe(stream=<_io.TextIOWrapper name='<stdout>' mode='w'
encoding='UTF-8'>, header=True, context={'leap': {'distrib':
{'non_viable': 0}, 'generation': 100}})

This probe takes an iterator as input and will track the
best-so-far (BSF) individual in the all the individuals it sees.

Insert an object of this class into a pipeline to have it track the the best individual it sees so far. It will write the
current best individual for each __call__ invocation to a given stream in CSV format.

Like many operators, this operator checks the context object to retrieve the current generation number for output
purposes.

>>> from leap_ec import context, data
>>> from leap_ec import probe
>>> pop = data.test_population
>>> context['leap']['generation'] = 12

The probe will write its output to the provided stream (default is stdout, but we illustrate here with a StringIO
stream):

>>> import io
>>> stream = io.StringIO()
>>> probe = BestSoFarIterProbe(stream=stream)
>>> bsf_output_iter = probe(iter(pop))

(continues on next page)

102 Chapter 2. LEAP Concepts

LEAP: Library for Evolutionary Algorithms in Python Documentation, Release v0.9dev

(continued from previous page)

>>> x = next(bsf_output_iter)
>>> x = next(bsf_output_iter)
>>> x = next(bsf_output_iter)
>>> print(stream.getvalue())
step,bsf
12,...
12,...
12,...

class leap_ec.probe.BestSoFarProbe(stream=<_io.TextIOWrapper name='<stdout>' mode='w'
encoding='UTF-8'>, header=True, context={'leap': {'distrib':
{'non_viable': 0}, 'generation': 100}})

This probe takes an list of individuals as input and will track the
best-so-far (BSF) individual across all the population it has seen.

Insert an object of this class into a pipeline to have it track the the best individual it sees so far. It will write the
current best individual for each __call__ invocation to a given stream in CSV format.

Like many operators, this operator checks the context object to retrieve the current generation number for output
purposes.

>>> from leap_ec import context, data
>>> from leap_ec import probe
>>> pop = data.test_population
>>> context['leap']['generation'] = 12

The probe will write its output to the provided stream (default is stdout, but we illustrate here with a StringIO
stream):

>>> import io
>>> stream = io.StringIO()
>>> probe = BestSoFarProbe(stream=stream)
>>> new_pop = probe(pop)
>>> print(stream.getvalue())
step,bsf
12,4

This operator does not change the state of the population: >>> new_pop == pop True

class leap_ec.probe.CartesianPhenotypePlotProbe(ax=None, xlim=(-5.12, 5.12), ylim=(-5.12, 5.12),
contours=None, granularity=None, title='Cartesian
Phenotypes', modulo=1, context={'leap': {'distrib':
{'non_viable': 0}, 'generation': 100}}, pad=())

Measure and plot a scatterplot of the populations’ location in a 2-D phenotype space.

Parameters
• ax (Axes) – Matplotlib axes to plot to (if None, a new figure will be created).

• xlim ((float, float)) – Bounds of the horizontal axis.

• ylim ((float, float)) – Bounds of the vertical axis.

• contours (Problem) – a problem defining a 2-D fitness function (this will be used to draw
fitness contours in the background of the scatterplot).

2.3. Detailed Explanations 103

LEAP: Library for Evolutionary Algorithms in Python Documentation, Release v0.9dev

• granularity (float) – (Optional) spacing of the grid to sample points along while drawing
the fitness contours. If none is given, then the granularity will default to 1/50th of the range
of the function’s bounds attribute.

• modulo (int) – take and plot a measurement every modulo steps (default 1).

• pad – A list of extra gene values, used to fill in the hidden dimensions with contants while
drawing fitness contours.

Attach this probe to matplotlib Axes and then insert it into an EA’s operator pipeline to get a live phenotype plot
that updates every modulo steps.

>>> import matplotlib.pyplot as plt
>>> from leap_ec.probe import CartesianPhenotypePlotProbe
>>> from leap_ec.representation import Representation

>>> from leap_ec.individual import Individual
>>> from leap_ec.algorithm import generational_ea

>>> from leap_ec import ops
>>> from leap_ec.decoder import IdentityDecoder
>>> from leap_ec.real_rep.problems import CosineFamilyProblem
>>> from leap_ec.real_rep.initializers import create_real_vector
>>> from leap_ec.real_rep.ops import mutate_gaussian

>>> # The fitness landscape
>>> problem = CosineFamilyProblem(alpha=1.0, global_optima_counts=[2, 2], local_
→˓optima_counts=[2, 2])

>>> # If no axis is provided, a new figure will be created for the probe to write to
>>> trajectory_probe = CartesianPhenotypePlotProbe(contours=problem,
... xlim=(0, 1), ylim=(0, 1),
... granularity=0.025)

>>> # Create an algorithm that contains the probe in the operator pipeline

>>> pop_size = 100
>>> ea = generational_ea(max_generations=20, pop_size=pop_size,
... problem=problem,
...
... representation=Representation(
... individual_cls=Individual,
... initialize=create_real_vector(bounds=[[0.4, 0.6]] * 2),
... decoder=IdentityDecoder()
...),
...
... pipeline=[
... trajectory_probe, # Insert the probe into the pipeline␣
→˓like so
... ops.tournament_selection,
... ops.clone,
... mutate_gaussian(std=0.05, expected_num_mutations=
→˓'isotropic', bounds=(0, 1)),

(continues on next page)

104 Chapter 2. LEAP Concepts

LEAP: Library for Evolutionary Algorithms in Python Documentation, Release v0.9dev

(continued from previous page)

... ops.evaluate,

... ops.pool(size=pop_size)

...])
>>> result = list(ea);

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0
Cartesian Phenotypes

class leap_ec.probe.FitnessPlotProbe(ax=None, xlim=None, ylim=None, modulo=1,
title='Best-of-Generation Fitness', x_axis_value=None,
context={'leap': {'distrib': {'non_viable': 0}, 'generation': 100}})

Measure and plot a population’s fitness trajectory.

Parameters
• ax (Axes) – Matplotlib axes to plot to (if None, a new figure will be created).

• xlim ((float, float)) – Bounds of the horizontal axis.

• ylim ((float, float)) – Bounds of the vertical axis.

• modulo (int) – take and plot a measurement every modulo steps (default 1).

• title – title to print on the plot

• x_axis_value – optional function to define what value gets plotted on the x axis. Defaults
to pulling the ‘generation’ value out of the default context object.

2.3. Detailed Explanations 105

LEAP: Library for Evolutionary Algorithms in Python Documentation, Release v0.9dev

• context – set a context object to query for the current generation. Defaults to the standard
leap_ec.context object.

Attach this probe to matplotlib Axes and then insert it into an EA’s operator pipeline.

>>> import matplotlib.pyplot as plt
>>> from leap_ec.probe import FitnessPlotProbe
>>> from leap_ec.representation import Representation

>>> f = plt.figure() # Setup a figure to plot to
>>> plot_probe = FitnessPlotProbe(ylim=(0, 70), ax=plt.gca())

>>> # Create an algorithm that contains the probe in the operator pipeline
>>> from leap_ec.individual import Individual
>>> from leap_ec.decoder import IdentityDecoder
>>> from leap_ec import ops
>>> from leap_ec.real_rep.problems import SpheroidProblem
>>> from leap_ec.real_rep.ops import mutate_gaussian
>>> from leap_ec.real_rep.initializers import create_real_vector

>>> from leap_ec.algorithm import generational_ea

>>> l = 10
>>> pop_size = 10
>>> ea = generational_ea(max_generations=100, pop_size=pop_size,
... problem=SpheroidProblem(maximize=False),
...
... representation=Representation(
... individual_cls=Individual,
... decoder=IdentityDecoder(),
... initialize=create_real_vector(bounds=[[-5.12, 5.12]] *␣
→˓l)
...),
...
... pipeline=[
... plot_probe, # Insert the probe into the pipeline like␣
→˓so
... ops.tournament_selection,
... ops.clone,
... mutate_gaussian(std=0.2, expected_num_mutations=
→˓'isotropic'),
... ops.evaluate,
... ops.pool(size=pop_size)
...])
>>> result = list(ea);

To get a live-updated plot that words like a real-time video of the EA’s progress, use this probe in conjunction
with the %matplotlib notebook magic for Jupyter Notebook (as opposed to %matplotlib inline, which only allows
static plots).

106 Chapter 2. LEAP Concepts

LEAP: Library for Evolutionary Algorithms in Python Documentation, Release v0.9dev

0 20 40 60 80 100

0

10

20

30

40

50

60

70

Best-of-Generation Fitness

2.3. Detailed Explanations 107

LEAP: Library for Evolutionary Algorithms in Python Documentation, Release v0.9dev

class leap_ec.probe.FitnessStatsCSVProbe(stream=<_io.TextIOWrapper name='<stdout>' mode='w'
encoding='UTF-8'>, header=True, extra_metrics=None,
comment=None, job: ~typing.Optional[str] = None, notes:
~typing.Optional[~typing.Dict] = None, modulo: int = 1,
numpy_as_list=True, context: ~typing.Dict = {'leap': {'distrib':
{'non_viable': 0}, 'generation': 100}})

A probe that records basic fitness statistics for a population to a text stream in CSV format.

This is meant to capture the “bread and butter” values you’ll typically want to see in any population-based op-
timization experiment. If you want additional columns with custom values, you can pass in a dict of notes with
constant values or extra_metrics with functions to compute them.

Parameters
• stream – the file object to write to (defaults to sys.stdout)

• header – whether to print column names in the first line

• extra_metrics – a dict of ‘column_name’: function pairs, to compute optional extra
columns. The functions take a the population as input as a list of individuals, and their
return value is printed in the column.

• job – optional constant job ID, which will be printed as the first column

• notes (str) – a dict of optional constant-value columns to include in all rows (ex. to identify
and experiment or parameters)

• numpy_as_list (bool) – if True, numpy arrays will be first converted to a python list before
printing. This is intended for multiobjective fitnesses, where large numpy arrays are normally
split across csv rows with the default formatter.

• context – a LEAP context object, used to retrieve the current generation from the EA state
(i.e. from context[‘leap’][‘generation’])

In this example, we’ll set up two three inputs for the probe: an output stream, the generation number, and a
population.

We use a StringIO stream to print the results here, but in practice you often want to use sys.stdout (the default)
or a file object:

>>> import io
>>> stream = io.StringIO()

The probe also relies on LEAP’s algorithm context to determine the generation number:

>>> from leap_ec.global_vars import context
>>> context['leap']['generation'] = 100

Here’s how we’d compute fitness statistics for a test population. The population is unmodified:

>>> from leap_ec.data import test_population
>>> probe = FitnessStatsCSVProbe(stream=stream, job=15, notes={'description': 'just␣
→˓a test'})
>>> probe(test_population) == test_population
True

and the output has the following columns: >>> print(stream.getvalue()) job, description, step, bsf, mean_fitness,
std_fitness, min_fitness, max_fitness 15, just a test, 100, 4, 2.5, 1.11803. . . , 1, 4 <BLANKLINE>

108 Chapter 2. LEAP Concepts

LEAP: Library for Evolutionary Algorithms in Python Documentation, Release v0.9dev

To add custom columns, use the extra_metrics dict. For example, here’s a function that computes the median
fitness value of a population:

>>> import numpy as np
>>> median = lambda p: np.median([ind.fitness for ind in p])

We can include it in the fitness stats report like so:

>>> stream = io.StringIO()
>>> extras_probe = FitnessStatsCSVProbe(stream=stream, job="15", extra_metrics={
→˓'median_fitness': median})
>>> extras_probe(test_population) == test_population
True

>>> print(stream.getvalue())
job, step, bsf, mean_fitness, std_fitness, min_fitness, max_fitness, median_fitness
15, 100, 4, 2.5, 1.11803..., 1, 4, 2.5

comment_character = '#'

default_metric_cols = ('bsf', 'mean_fitness', 'std_fitness', 'min_fitness',
'max_fitness')

time_col = 'step'

write_comment(stream)

write_header(stream)

class leap_ec.probe.HeatMapPhenotypeProbe(ax=None, title='HeatMap of Phenotypes', modulo=1,
context={'leap': {'distrib': {'non_viable': 0}, 'generation':
100}})

class leap_ec.probe.HistPhenotypePlotProbe(ax=None, title='Histogram of Phenotypes', modulo=1,
context={'leap': {'distrib': {'non_viable': 0}, 'generation':
100}})

A visualization probe that uses matplotlib to show a live histogram of the population’s phenotypes.

This typically makes the most since for 1-dimensional genotypes.

class leap_ec.probe.PopulationMetricsPlotProbe(ax=None, metrics=None, xlim=None, ylim=None,
modulo=1, title='Population Metrics',
x_axis_value=None, context={'leap': {'distrib':
{'non_viable': 0}, 'generation': 100}})

reset()

class leap_ec.probe.SumPhenotypePlotProbe(ax=None, xlim=(-5.12, 5.12), ylim=(-5.12, 5.12),
problem=None, granularity=1, title='Sum Phenotypes',
modulo=1, context={'leap': {'distrib': {'non_viable': 0},
'generation': 100}})

Plot the population’s location on a fitness landscape that is defined over the sum of a vector phenotype’s elements.
This is useful for visualizing OneMax functions and similar functions that can be understood in terms of a graph
with “the number of ones” along the x axis.

Parameters

2.3. Detailed Explanations 109

LEAP: Library for Evolutionary Algorithms in Python Documentation, Release v0.9dev

• ax (Axes) – Matplotlib axes to plot to (if None, a new figure will be created).

• xlim ((float, float)) – Bounds of the horizontal axis.

• ylim ((float, float)) – Bounds of the vertical axis.

• problem (Problem) – a problem that will be used to draw a fitness curve.

• granularity (float) – (Optional) spacing of the grid to sample points along while drawing
the fitness contours. If none is given, then the granularity will default to 1.0.

• modulo (int) – take and plot a measurement every modulo steps (default 1).

Attach this probe to matplotlib Axes and then insert it into an EA’s operator pipeline to get a live phenotype plot
that updates every modulo steps.

>>> import matplotlib.pyplot as plt
>>> from leap_ec.probe import SumPhenotypePlotProbe
>>> from leap_ec.representation import Representation

>>> from leap_ec.individual import Individual
>>> from leap_ec.algorithm import generational_ea

>>> from leap_ec import ops
>>> from leap_ec.binary_rep.problems import DeceptiveTrap
>>> from leap_ec.binary_rep.initializers import create_binary_sequence
>>> from leap_ec.binary_rep.ops import mutate_bitflip

>>> # The fitness landscape
>>> problem = DeceptiveTrap()

>>> # If no axis is provided, a new figure will be created for the probe to write to
>>> dimensions = 20
>>> trajectory_probe = SumPhenotypePlotProbe(problem=problem,
... xlim=(0, dimensions), ylim=(0,␣
→˓dimensions))

>>> # Create an algorithm that contains the probe in the operator pipeline

>>> pop_size = 100
>>> ea = generational_ea(max_generations=20, pop_size=pop_size,
... problem=problem,
...
... representation=Representation(
... individual_cls=Individual,
... initialize=create_binary_sequence(length=dimensions)
...),
...
... pipeline=[
... trajectory_probe, # Insert the probe into the pipeline␣
→˓like so
... ops.tournament_selection,
... ops.clone,
... mutate_bitflip(expected_num_mutations=1),
... ops.evaluate,

(continues on next page)

110 Chapter 2. LEAP Concepts

LEAP: Library for Evolutionary Algorithms in Python Documentation, Release v0.9dev

(continued from previous page)

... ops.pool(size=pop_size)

...])
>>> result = list(ea);

0 1 2 3 4 5 6
0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

Sum Phenotypes

leap_ec.probe.best_of_gen(population)
Syntactic sugar to select the best individual in a population.

Parameters
• population – a list of individuals

• context – optional dict of auxiliary state (ignored)

>>> from leap_ec.data import test_population
>>> print(best_of_gen(test_population))
Individual<...> with fitness 4

leap_ec.probe.num_fixated_metric(population: list)
Computes the genetic diversity of the population by counting the number of variables in the genome that have
zero variance.

This is a so-called “column-wise” metric, in the sense that it considers each element of the solution vectors
independently.

2.3. Detailed Explanations 111

LEAP: Library for Evolutionary Algorithms in Python Documentation, Release v0.9dev

leap_ec.probe.pairwise_squared_distance_metric(population: list)
Computes the genetic diversity of a population by considering the sum of squared Euclidean distances between
individual genomes.

We compute this in 𝑂(𝑛) by writing the sum in terms of distance from the population centroid 𝑐:

𝒟(population) =
𝑛∑︁

𝑖=1

𝑛∑︁
𝑗=1

‖𝑥𝑖 − 𝑥𝑗‖2 = 2𝑛

𝑛∑︁
𝑖=1

‖𝑥𝑖 − 𝑐‖2

leap_ec.probe.print_individual(next_individual: ~typing.Iterator = '__no__default__', prefix='',
numpy_as_list=False, stream=<_io.TextIOWrapper name='<stdout>'
mode='w' encoding='UTF-8'>)→ Iterator

Just echoes the individual from within the pipeline

Uses next_individual.__str__

Parameters
• next_individual – iterator for next individual to be printed

• prefix – prefix appended to the start of the line

• numpy_as_list – If True, numpy arrays are converted to lists before printing

• stream – File object passed to print

Returns
the same individual, unchanged

leap_ec.probe.print_population(population, generation, numpy_as_list=False)
Convenience function for pretty printing a population that’s associated with a given generation

Parameters
• population – The population of individuals to be printed

• generation – The generation of the population

• numpy_as_list – If True, numpy arrays are converted to lists before printing

Returns
None

leap_ec.probe.print_probe(population='__no__default__', probe='__no__default__',
stream=<_io.TextIOWrapper name='<stdout>' mode='w' encoding='UTF-8'>,
prefix='')

pipeline operator for printing the given population

This is really a wrapper around probe that, itself, gets passed te entire population.

The optional prefix is used to tag the output. For example, you may want to print ‘before’ to indicate that the
population is before an operator is applied.

Parameters
• population – to be printed

• probe – secondary probe that gets the poplation as input and for which the output is passed
to stream

• stream – to write output

• prefix – optional string prefix to prepend to output

112 Chapter 2. LEAP Concepts

LEAP: Library for Evolutionary Algorithms in Python Documentation, Release v0.9dev

Returns
population

leap_ec.probe.sum_of_variances_metric(population: list)
Computes the genetic diversity of a population by considering the sum of the variances of each variable in the
genome.

𝒟(population) =
𝐿∑︁

𝑖=1

E𝑗∈𝑃 [𝑥𝑗 [𝑖]− E[𝑥𝑗 [𝑖]]]

This is a so-called “column-wise” metric, in the sense that it considers each element of the solution vectors
independently.

2.3.8 Parsimony Pressure

One common problem with variable length representations is “bloat” whereby genome lengths will gradually increase
over time. This may be due to over-fitting or the accumulation of “junk DNA” over time.

LEAP currently provides two approaches to mitigating bloat. First is a very simple “genome tax,” or penalty by genome
length, popularized by Koza [Koz92]. The second is lexicographical parsimony, or “tie breaking parsimony,” where
the individual with the shortest genome is returned if their respective fitnesses happen to be equivalent Luke and Panait
[LP02].

API

Parsimony pressure functions.

These are intended to be used as key parameters for selection operators.

Provided are Koza-style parsimony pressure and lexicographic parsimony key functions.

leap_ec.parsimony.koza_parsimony(ind='__no__default__', *, penalty='__no__default__')
Penalize fitness by genome length times a constant, in the style of Koza [Koz92].

>>> import toolz
>>> from leap_ec.individual import Individual
>>> from leap_ec.decoder import IdentityDecoder
>>> from leap_ec.binary_rep.problems import MaxOnes
>>> import leap_ec.ops as ops
>>> import numpy as np
>>> problem = MaxOnes()
>>> pop = [Individual(np.array([0, 0, 0, 1, 1, 1]), problem=problem),
... Individual(np.array([0, 0]), problem=problem),
... Individual(np.array([1, 1]), problem=problem),
... Individual(np.array([1, 1, 1]), problem=problem)]
>>> pop = Individual.evaluate_population(pop)
>>> best, = ops.truncation_selection(pop, size=1)
>>> print(best.genome, best.fitness)
[0 0 0 1 1 1] 3

>>> best, = ops.truncation_selection(pop, size=1, key=koza_parsimony(penalty=.5))
>>> print(best.genome, best.fitness)
[1 1 1] 3

2.3. Detailed Explanations 113

LEAP: Library for Evolutionary Algorithms in Python Documentation, Release v0.9dev

𝑓𝑝(𝑥) = 𝑓(𝑥)− 𝑐𝑙(𝑥)

Where f(x) is original fitness, c is a penalty constant, and l(x) is the genome length.

Parameters
• ind – to be compared

• penalty – for denoting penalty strength

Returns
altered comparison criteria

leap_ec.parsimony.lexical_parsimony(ind)
If two fitnesses are the same, break the tie with the smallest genome

This implements Lexicographical Parsimony Pressure [LP02], which is essentially where if the fitnesses of two
individuals are close, then break the tie with the smallest genome.

>>> import toolz
>>> from leap_ec.individual import Individual
>>> from leap_ec.binary_rep.problems import MaxOnes
>>> import leap_ec.ops as ops
>>> import numpy as np
>>> problem = MaxOnes()
>>> pop = [Individual(np.array([0, 0, 0, 1, 1, 1]), problem=problem),
... Individual(np.array([0, 0]), problem=problem),
... Individual(np.array([1, 1]), problem=problem),
... Individual(np.array([1, 1, 1]), problem=problem)]
>>> pop = Individual.evaluate_population(pop)
>>> best, = ops.truncation_selection(pop, size=1)
>>> print(best.genome, best.fitness)
[0 0 0 1 1 1] 3

>>> best, = ops.truncation_selection(pop, size=1, key=lexical_parsimony)
>>> print(best.genome, best.fitness)
[1 1 1] 3

Parameters
ind – to be compared

Returns
altered comparison criteria

2.3.9 Visualization

Being able to visualize a running evolutionary algorithm is important. Here we describe special pipeline operators that
use matplotlib to visualize the state of the population.

114 Chapter 2. LEAP Concepts

LEAP: Library for Evolutionary Algorithms in Python Documentation, Release v0.9dev

Prebuilt Algorithms

LEAP’s “prebuilt” algorithms (also sometimes referred to as “monolithic functions”) have optional support for visual-
izations.

leap_ec.simple.ea_solve has two optional arguments that control visualization: viz and viz_ylim. viz is a boolean
that controls whether or not to display the visualization; if True a matplot lib window will appear and update during a
run with the . viz_ylim is used to supply the initial bounds for the y-axis of the visualization. The plotting is carried out
via an instance of leap_ec.probe.FitnessPlotProbe, and which is added as a last pipeline operator; this means
that it will be plotting the created offspring with each iteration.

The other monolithic function, leap_ec.algorithm.generational_ea, offers more fine-tuned control over visual-
ization. Since the user specifies the pipeline, a visualization pipeline operator can be added anywhere in the pipeline.
Moreover, since the user is specifying the visualization operator, they’re free to tailor how the visualization is done.
For example, the user can specify a custom title and the update frequency.

Tailored evolutionary algorithms

Of course many practitioners will want to build their own evolutionary algorithms and forgo the use of the aforemen-
tioned monolithic functions. For these users, LEAP offers a number of pipeline operators that can be used to visualize
the state of the population merely by inserting an instance of one of these into the pipeline. A full list of such operators
is in the next section.

Visualization Pipeline Operators

• leap_ec.probe.FitnessPlotProbe
A pipeline operator that plots the fitness of the population with each iteration.

• leap_ec.probe.PopulationMetricsPlotProbe
A pipeline operator that plots user-specified metrics of the population with each invocation. The user is
free to specify which metrics to plot. Please refer to examples/simple/onemax_style_problems.py for an
example of how to use this operator.

• leap_ec.probe.CartesianPhenotypePlotProbe
A pipeline operator that plots the phenotypes of the population with each iteration. This operator is only
useful for problems where the phenotype is a 2D point.

• leap_ec.probe.HistPhenotypePlotProbe
A pipeline operator that shows a dynamic histogram of phenotypes.

• leap_ec.probe.HeatMapPhenotypeProbe
A pipeline operator that shows a heatmap of phenotypes.

• leap_ec.probe.SumPhenotypePlotProbe
This operator plots the sum of the phenotype vector with each iteration. For example, this is good for the
MAXONES problem that is literally the sum of all the ones in a binary vector.

2.3. Detailed Explanations 115

LEAP: Library for Evolutionary Algorithms in Python Documentation, Release v0.9dev

Examples

You can find examples on how to use these probes in the following:

• examples/advanced/custom_stopping_condition.py

• examples/advanced/neural_network_cartpole.py

• examples/advanced/island_model.py

• examples/advanced/cgp_images.py

• examples/advanced/cgp.py

• examples/advanced/real_rep_with_diversity_metrics.py

• examples/advanced/multitask_island_model.py

• examples/advanced/external_simulation.py

• examples/advanced/pitt_rules_cartpole.py

• examples/distributed/simple_sync_distributed.py

• examples/simple/int_rep.py

• examples/simple/one+one_es.py

• examples/simple/onemax_style_problems.py

• examples/simple/real_rep_genewise_mutation.py

116 Chapter 2. LEAP Concepts

CHAPTER

THREE

PREBUILT ALGORITHMS

Fig. 3.1: The three tiers of tailorability for using LEAP. LEAP has three levels of abstraction with gradually in-
creasing order of customization. The top-level has ea_solve() that is ideal for real-valued optimization problems. The
mid-level has two functions that allows for some tailoring of the pipeline and representation, generational_ea() and
steady_state(). The bottom-most tier provides maximum flexibility and control over an EA’s implementation, and in-
volves the practitioner assembling bespoke EAs using LEAP low-level components, as shown by the code snippet.

Fig.
3.1
de-
picts
the
top-
level
entry-
point,
ea_solve(),
and
has
the
least
cus-
tomiza-
tion,
but
is
ideal
for
real-
valued
op-
ti-
miza-
tion
prob-
lems.
The
mid-
level
al-
lows
for
more
user
cus-

tomization. generational_ea() allows for implementing most traditional evolutionary algorithms, such as genetic
algorithms and evolutionary programs. asynchronous.steady_state() is used to implement an asynchronous steady-state
EA suitable for HPC platforms as they make the best use of HPC resources. The bottom-most level provides the

117

LEAP: Library for Evolutionary Algorithms in Python Documentation, Release v0.9dev

greatest amount of flexability, and is where users implement their evolutionary algorithms using low-level LEAP
components.

ea_solve() and generational_ea() is documented below. asynchronous.steady_state() is documented in Asynchronous
fitness evaluations. Information on the bottom-most tier can be found in Implementing Tailored Evolutionary Algo-
rithms with LEAP.

3.1 ea_solve()

leap_ec.simple.ea_solve(function, bounds, generations=100, pop_size=2, mutation_std=1.0, maximize=False,
viz=False, viz_ylim=(0, 1), hard_bounds=True, dask_client=None,
stream=<_io.TextIOWrapper name='<stdout>' mode='w' encoding='UTF-8'>)

Provides a simple, top-level interfact that optimizes a real-valued function using a simple generational EA.

Parameters
• function – the function to optimize; should take lists of real numbers as input and return a

float fitness value

• bounds ([(float, float)]) – a list of (min, max) bounds to define the search space

• generations (int) – the number of generations to run for

• pop_size (int) – the population size

• mutation_std (float) – the width of the mutation distribution

• maximize (bool) – whether to maximize the function (else minimize)

• viz (bool) – whether to display a live best-of-generation plot

• hard_bounds (bool) – if True, bounds are enforced at all times during evolution; otherwise
they are only used to initialize the population.

• viz_ylim ((float, float)) – initial bounds to use of the plots vertical axis

• dask_client – is optional dask Client to enable parallel evaluations

• stream – a stream to write best-so-far values to (defaults to stdout)

The basic call includes instrumentation that prints the best-so-far fitness value of each generation to stdout:

>>> import io
>>> from leap_ec.simple import ea_solve
>>> stream = io.StringIO()
>>> ea_solve(sum, bounds=[(0, 1)]*5, stream=stream)
array([..., ..., ..., ..., ...])

The stream captures the best-so-far individual at each iteration of the algorithm: >>> print(stream.getvalue()) #
doctest: +ELLIPSIS, +NORMALIZE_WHITESPACE step,bsf 0,. . . 1,. . . 2,. 99,. . . <BLANKLINE>

When viz=True, a live BSF plot will also display:

>>> ea_solve(sum, bounds=[(0, 1)]*5, viz=True)
array([..., ..., ..., ..., ...])

118 Chapter 3. Prebuilt Algorithms

LEAP: Library for Evolutionary Algorithms in Python Documentation, Release v0.9dev

0 20 40 60 80 100

0.0

0.5

1.0

1.5

2.0

2.5

3.0

Best-of-Generation Fitness

3.1. ea_solve() 119

LEAP: Library for Evolutionary Algorithms in Python Documentation, Release v0.9dev

3.1.1 Example

And example using ea_solve() can be found in examples/simple/simple.py.

3.2 generational_ea()

leap_ec.algorithm.generational_ea(max_generations: int, pop_size: int, problem, representation, pipeline,
stop=<function <lambda>>, init_evaluate=<bound method
Individual.evaluate_population of <class
'leap_ec.individual.Individual'>>, k_elites: int = 1, start_generation:
int = 0, context={'leap': {'distrib': {'non_viable': 0}, 'generation':
100}})

This function provides an evolutionary algorithm with a generational population model.

When called this initializes and evaluates a population of size pop_size using the init_evaluate function and then
pipes it through an operator pipeline (i.e. a list of operators) to obtain offspring. Wash, rinse, repeat.

The algorithm is provided here at the “metaheuristic” level: in order to apply it to a particular problem, you
must parameterize it with implementations of its various components. You must decide the population size, how
individuals are represented and initialized, the pipeline of reproductive operators, etc. A metaheuristic template
of this kind can be used to implement genetic algorithms, genetic programming, certain evolution strategies, and
all manner of other (novel) algorithms by passing in appropriate components as parameters.

Parameters
• max_generations (int) – The max number of generations to run the algorithm for. Can

pass in float(‘Inf’) to run forever or until the stop condition is reached.

• pop_size (int) – Size of the initial population

• stop (int) – A function that accepts a population and returns True iff it’s time to stop evolv-
ing.

• problem (Problem) – the Problem that should be used to evaluate individuals’ fitness

• representation – How the problem is represented in individuals

• pipeline (list) – a list of operators that are applied (in order) to create the offspring
population at each generation

• init_evaluate – a function used to evaluate the initial population, before the main pipeline
is run. The default of Individual.evaluate_population is suitable for many cases, but you may
wish to pass a different operator in for distributed evaluation or other purposes.

• k_elites – keep k elites

• start_generation – index of the first generation to count from (defaults to 0). You might
want to change this, for example, in experiments that involve stopping and restarting an al-
gorithm.

Returns
the final population

The intent behind this kind of EA interface is to allow the complete configuration of a basic evolutionary algo-
rithm to be defined in a clean and readable way. If you define most of the components in-line when passing them
to the named arguments, then the complete configuration of an algorithmic experiment forms one concise code
block. Here’s what a basic (mu, lambda)-style EA looks like (that is, an EA that throws away the parents at each
generation in favor of their offspring):

120 Chapter 3. Prebuilt Algorithms

LEAP: Library for Evolutionary Algorithms in Python Documentation, Release v0.9dev

>>> from leap_ec import Individual, Representation
>>> from leap_ec.algorithm import generational_ea, stop_at_generation
>>> from leap_ec.binary_rep.problems import MaxOnes
>>> from leap_ec.binary_rep.initializers import create_binary_sequence
>>> from leap_ec.binary_rep.ops import mutate_bitflip
>>> import leap_ec.ops as ops
>>> pop_size = 5
>>> final_pop = generational_ea(max_generations=100, pop_size=pop_size,
...
... problem=MaxOnes(), # Solve a MaxOnes Boolean␣
→˓optimization problem
...
... representation=Representation(
... initialize=create_binary_sequence(length=10) #␣
→˓Initial genomes are random binary sequences
...),
...
... # The operator pipeline
... pipeline=[
... ops.tournament_selection, # Select␣
→˓parents via tournament selection
... ops.clone, # Copy them (just␣
→˓to be safe)
... mutate_bitflip(expected_num_mutations=1), # Basic␣
→˓mutation with a 1/L mutation rate
... ops.UniformCrossover(p_swap=0.4), # Crossover with a␣
→˓40% chance of swapping each gene
... ops.evaluate, # Evaluate fitness
... ops.pool(size=pop_size) # Collect␣
→˓offspring into a new population
...])

The algorithm runs immediately and returns the final population:

>>> print(*final_pop, sep='\n')
Individual<...> ...
Individual<...> ...
Individual<...> ...
...
Individual<...> ...

You can get the best individual by using max (since comparison on individuals is based on the Problem associated
with them, this will return the best individaul even on minimization problems):

>>> max(final_pop)
Individual<...>...

3.2. generational_ea() 121

LEAP: Library for Evolutionary Algorithms in Python Documentation, Release v0.9dev

3.2.1 Example

And example using generational_ea() can be found in examples/simple/int_rep.py.

122 Chapter 3. Prebuilt Algorithms

CHAPTER

FOUR

IMPLEMENTING TAILORED EVOLUTIONARY ALGORITHMS WITH
LEAP

The Prebuilt Algorithms , ea_solve(), generational_ea(), and asynchronous.steady_state() may not be sufficient to ad-
dress your problem. This could be that you want to access the state of objects outside the pipeline during a run, or that
you want to add complex bookkeeping not easily supported by a prebuilt, among many other possible reasons.

This leaves assembling a bespoke evolutionary algorithm (EA) using low-level LEAP components. Generally, to do
that you will need to do the following:

• Come up with a suitable representation for your problem

– What is the genome going to look like? Is it an indirect representation like a binary representation that must
be decoded? Or a phenotypic, or direct representation, such as a real-valued vector? Or something else?

– How are genomes going to be decoded into a phenotypic representation suitable for the associated Problem
class?

– Is the default Individual class suitable? Or will one of its subclasses be more appropriate? Will you have
to write your own to keep additional state?

• Define a Problem sub-class

• Implement a loop wrapped around a pipeline of appropriate pipeline operators

• Determine what output to generate

• Optionally visualizing a run

These will be described in more detail in the following sub-sections.

4.1 Deciding on a suitable representation

The first design decision you will have to make is how to best represent your problem. There are two broad categories
of representations, genotypic and phenotypic. A genotypic representation is a form of indirect representation whereby
problem values use data that must be decoded into values that make sense to the associated Problem class you will
also define. One popular example is using a binary encoding that must be decoded into values, usually integers or
real-value sequences, that can then be used by a Problem instance to evaluate an individual. (However, there are some
problems that directly use the binary sequences without having to interpret the values, such as the MaxOnes problem.)
A phenotypic representation is able to directly represent problem relevant values in some way, usually as a vector of
real-values that correspond to problem parameters.

123

LEAP: Library for Evolutionary Algorithms in Python Documentation, Release v0.9dev

4.1.1 Decoders for binary representations

If you use a binary representation, then you will almost certainly need to define an associated decoder to convert binary
sequences within Individual genomes into values that the associated Problem can use. A variety of premade binary
decoders can be found in leap_ec.binary_rep.decoders, and these can be used to convert binary sequences to
integers or real values. Gray code versions of binary decoders are also included.

Note: Gray encoding Gray encoding is an alternative integer representation that use binary sequences. Gray encoding
resolves the issue where bit flip mutation of higher order bits would greatly change the values, whereas a Grey encoded
binary integer will only change the value a small amount regardless of which bit was flipped in the binary sequence.
(See also: Grey code)

4.1.2 Impact on representation on choice of pipeline operators

There will be two areas where you representation choice is going to have an impact on the code you write. First is in how
you initialize individuals with random genomes. The second will be mutation and possibly crossover pipeline operators
tailored to that representation. The mutation and crossover pipeline operators are generally going to be specific to the
underlying representation. For example, bit flip mutation is relevant to binary representations, and a Gaussian mutation
is appropriate for real-value representations. There are sub-packages for integer, real, and binary representations that
have an ops.py that will contain pertubation (mutation) operators appropriate for the associated representation.

4.1.3 LEAP supports three numeric representations

There are three numeric representations supported by LEAP, that for binary, integer, and real values. You can find initial-
izers that create random values for those value types in their respective sub-packages. You can find them in leap_ec.
binary_rep.initializers, leap_ec.int_rep.initializers, and leap_ec.real_rep.initializers, re-
spectively.

4.1.4 Support for exotic representations

LEAP is flexible enough to support other, more exotic representations, such as graphs and matrices. However, you will
have to write your own initializers and mutation (and possibly crossover) operators to support such novel genome types.

4.2 Defining a Problem subclass

The Problems are where you implement how to evaluate an individual to solve your problem. You will need to create
a Problem sub-class and implement its evaluate() member function accordingly.

Problem is an abstract base class (ABC), so you must subclass from it. Moreover, there are a number of Problem
subclasses, so you will need to pick one that is the best fit for your situation. More than likely you will subclass from
ScalarProblem since it supports real-valued fitnesses and it handles fitnesses that are NaNs, which can happen if you
use RobustIndividual or DistributedIndividual and an exception is thrown during evaluation. (I.e., it was impossible to
assign a fitness because the evaluation failed, so we signal that by assigning NaN as the fitness.)

If you use ScalarProblem or one of its subclasses, you will also have to specify whether it is a maximization problem
via the boolean parameter passed into the class constructor.

There are a number of example Problem implementations that can be found in real_rep.problems many of which are
popular benchmarks.

124 Chapter 4. Implementing Tailored Evolutionary Algorithms with LEAP

https://en.wikipedia.org/wiki/Gray_code

LEAP: Library for Evolutionary Algorithms in Python Documentation, Release v0.9dev

4.3 Possibly defining or choosing a special Individual subclass

Individuals encapsulate a posed solution to a problem and an associated fitness after evaluation. For most situations
the default Individual class should be fine. However, you can also use RobustIndividual if you want individuals to
handle exceptions that may be thrown during evaluation. If you are using the synchronous or asynchronous distributed
evaluation support, then you may consider using DistributedIndividual, which itself is a subclass of RobustIndividual,
but also assigns a UUID to each individual, a unique birth ID integer, and start and stop evaluation times in UNIX
epoch time.

Of course, if none of those Individual classes meet your needs, you can freely create your own Individual subclass.
For example, you may want a subclass that performs additional bookkeeping, such as perhaps maintaining links to its
parents and any clones (offspring).

4.4 Putting all that together

Now that you have chosen a representation, an associated Decoder, a Problem, and an Individual class, you are now
ready to assemble those components into a functional evolutionary algorithm. Generally, your code will follow this
pattern:

parents ← create_initial_random_population()

While not done:

offspring ← toolz.pipe(parents, *pipeline_ops)
parents ← offspring

That is, first a population of parents are randomly created, and then we fall into a loop where we create offspring
from those parents by generation until we are done with some sort of arbitrary stopping criteria. Within the loop the
old parents are replaced with the offspring. There is, of course, a lot more nuance to that with actual evolutionary
algorithms, but that captures the essence of EAs.

The part where the offspring are created merits more discussion. We rely on toolz.pipe() to take a source of individuals,
the current parents, from which to generate a set of offspring. Individuals are selected by demand from the given sequent
of pipeline operators, where each of these operators will manipulate the individuals that pass through them in some
way. This concept is described in more detail in Operator Pipeline.

4.4.1 Evolutionary algorithm examples

There are a number of examples to steer by found in examples/simple. In particular:

• simple_ep.py – simple example of an Evolutionary Program

• simple_es.py – simple example of an Evolutionary Strategy

• simple_ga.py – simple example of a Genetic Algorithm

• simple_ev.py – simple example of an Evolutionary Algorithm as defined in Ken De Jong’s Evolutionary Com-
putation: A Unified Approach.

4.3. Possibly defining or choosing a special Individual subclass 125

LEAP: Library for Evolutionary Algorithms in Python Documentation, Release v0.9dev

126 Chapter 4. Implementing Tailored Evolutionary Algorithms with LEAP

CHAPTER

FIVE

DISTRIBUTED LEAP

LEAP supports synchronous and asynchronous distributed concurrent fitness evaluations that can significantly speed-
up runs. LEAP uses dask (https://dask.org/), which is a popular distributed processing python package, to implement
parallel fitness evaluations, and which allows easy scaling from laptops to supercomputers.

5.1 Synchronous fitness evaluations

Synchronous fitness evaluations are essentially a map/reduce approach where individuals are fanned out to computing
resources to be concurrently evaluated, and then the calling process waits until all the evaluations are done. This is
particularly suited for by-generation approaches where offspring are evaluated in a batch, and progress in the EA only
proceeds when all individuals have been evaluated.

5.1.1 Components

leap_ec.distrib.synchronous provides two components to implement synchronous individual parallel evaluations.

leap_ec.distrib.synchronous.eval_population
which evaluates an entire population in parallel, and returns the evaluated population

leap_ec.distrib.synchronous.eval_pool
is a pipeline operator that will collect offspring and then evaluate them all at once in parallel; the
evaluated offspring are returned

5.1.2 Example

The following shows a simple example of how to use the synchronous parallel fitness evaluation in LEAP.

1 #!/usr/bin/env python
2 """ Simple example of using leap_ec.distrib.synchronous
3

4 """
5 import os
6

7 from distributed import Client
8 import toolz
9

10 from leap_ec import context, test_env_var
11 from leap_ec import ops
12 from leap_ec.decoder import IdentityDecoder

(continues on next page)

127

LEAP: Library for Evolutionary Algorithms in Python Documentation, Release v0.9dev

(continued from previous page)

13 from leap_ec.binary_rep.initializers import create_binary_sequence
14 from leap_ec.binary_rep.ops import mutate_bitflip
15 from leap_ec.binary_rep.problems import MaxOnes
16 from leap_ec.distrib import DistributedIndividual
17 from leap_ec.distrib import synchronous
18 from leap_ec.probe import AttributesCSVProbe
19

20

21 ##############################
22 # Entry point
23 ##############################
24 if __name__ == '__main__':
25

26 # We've added some additional state to the probe for DistributedIndividual,
27 # so we want to capture that.
28 probe = AttributesCSVProbe(attributes=['hostname',
29 'pid',
30 'uuid',
31 'birth_id',
32 'start_eval_time',
33 'stop_eval_time'],
34 do_fitness=True,
35 do_genome=True,
36 stream=open('simple_sync_distributed.csv', 'w'))
37

38 # Just to demonstrate multiple outputs, we'll have a separate probe that
39 # will take snapshots of the offspring before culling. That way we can
40 # compare the before and after to see what specific individuals were culled.
41 offspring_probe = AttributesCSVProbe(attributes=['hostname',
42 'pid',
43 'uuid',
44 'birth_id',
45 'start_eval_time',
46 'stop_eval_time'],
47 do_fitness=True,
48 stream=open('simple_sync_distributed_offspring.csv', 'w'))
49

50 with Client() as client:
51 # create an initial population of 5 parents of 4 bits each for the
52 # MAX ONES problem
53 parents = DistributedIndividual.create_population(5, # make five individuals
54 initialize=create_binary_

→˓sequence(
55 4), # with four bits
56 decoder=IdentityDecoder(),
57 problem=MaxOnes())
58

59 # Scatter the initial parents to dask workers for evaluation
60 parents = synchronous.eval_population(parents, client=client)
61

62 # probes rely on this information for printing CSV 'step' column
63 context['leap']['generation'] = 0

(continues on next page)

128 Chapter 5. Distributed LEAP

LEAP: Library for Evolutionary Algorithms in Python Documentation, Release v0.9dev

(continued from previous page)

64

65 probe(parents) # generation 0 is initial population
66 offspring_probe(parents) # generation 0 is initial population
67

68 # When running the test harness, just run for two generations
69 # (we use this to quickly ensure our examples don't get bitrot)
70 if os.environ.get(test_env_var, False) == 'True':
71 generations = 2
72 else:
73 generations = 5
74

75 for current_generation in range(generations):
76 context['leap']['generation'] += 1
77

78 offspring = toolz.pipe(parents,
79 ops.tournament_selection,
80 ops.clone,
81 mutate_bitflip(expected_num_mutations=1),
82 ops.UniformCrossover(),
83 # Scatter offspring to be evaluated
84 synchronous.eval_pool(client=client,
85 size=len(parents)),
86 offspring_probe, # snapshot before culling
87 ops.elitist_survival(parents=parents),
88 # snapshot of population after culling
89 # in separate CSV file
90 probe)
91

92 print('generation:', current_generation)
93 [print(x.genome, x.fitness) for x in offspring]
94

95 parents = offspring
96

97 print('Final population:')
98 [print(x.genome, x.fitness) for x in parents]

This example of a basic genetic algorithm that solves the MAX ONES problem does not use a provided monolithic entry
point, such as found with ea_solve() or generational_ea() but, instead, directly uses LEAP’s pipeline architecture. Here,
we create a simple dask Client that uses the default local cores to do the parallel evaluations. The first step is to create the
initial random population, and then distribute those to dask workers for evaluation via synchronous.eval_population(),
and which returns a set of fully evaluated parents. The for loop supports the number of generations we want, and
provides a sequence of pipeline operators to create offspring from selected parents. For concurrently evaluating newly
created offspring, we use synchronous.eval_pool, which is just a variant of the leap_ec.ops.pool operator that relies on
dask to evaluate individuals in parallel.

Note: If you wanted to use resources on a cluster or supercomputer, you would start up dask-scheduler and dask-
worker`s first, and then point the `Client at the scheduler file used by the scheduler and workers. Distributed LEAP
is agnostic on what kind of dask client is passed as a client parameter – it will generically perform the same whether
running on local cores or on a supercomputer.

5.1. Synchronous fitness evaluations 129

LEAP: Library for Evolutionary Algorithms in Python Documentation, Release v0.9dev

5.1.3 Separate Examples

There is a jupyter notebook that walks through a synchronous implementation in exam-
ples/distributed/simple_sync_distributed.ipynb. The above example can also be found at exam-
ples/distributed/simple_sync_distributed.py.

5.2 Asynchronous fitness evaluations

Asynchronous fitness evaluations are a little more involved in that the EA immediately integrates newly evaluated
individuals into the population – it doesn’t wait until all the individuals have finished evaluating before proceeding.
More specifically, LEAP implements an asynchronous steady-state evolutionary algorithm (ASEA).

Fig. 5.1: Algorithm 1: Asynchronous steady-state evolutionary algorithm concurrently updates a population as indi-
viduals are evaluated [CSB20].

Algorithm 1 shows the details of how an ASEA works. Newly evaluated individuals are inserted into the population,
which then leaves a computing resource available. Offspring are created from one or more selected parents, and are
then assigned to that computing resource, thus assuring minimal idle time between evaluations. This is particularly
important within HPC contexts as it is often the case that such resources are costly, and therefore there is an implicit
need to minimize wasting such resources. By contrast, a synchronous distributed approach risks wasting computing
resources because computing resources that finish evaluating individuals before the last individual is evaluated will idle
until the next generation.

130 Chapter 5. Distributed LEAP

LEAP: Library for Evolutionary Algorithms in Python Documentation, Release v0.9dev

5.2.1 Example

1 from pprint import pformat
2

3 from dask.distributed import Client, LocalCluster
4

5 from leap_ec import Representation
6 from leap_ec import ops
7 from leap_ec.binary_rep.problems import MaxOnes
8 from leap_ec.binary_rep.initializers import create_binary_sequence
9 from leap_ec.binary_rep.ops import mutate_bitflip

10 from leap_ec.distrib import DistributedIndividual
11 from leap_ec.distrib import asynchronous
12 from leap_ec.distrib.probe import log_worker_location, log_pop
13

14 MAX_BIRTHS = 500
15 INIT_POP_SIZE = 20
16 POP_SIZE = 20
17 GENOME_LENGTH = 5
18

19 with Client(scheduler_file='scheduler.json') as client:
20 final_pop = asynchronous.steady_state(client, # dask client
21 births=MAX_BIRTHS,
22 init_pop_size=INIT_POP_SIZE,
23 pop_size=POP_SIZE,
24

25 representation=Representation(
26 initialize=create_binary_sequence(
27 GENOME_LENGTH),
28 individual_cls=DistributedIndividual),
29

30 problem=MaxOnes(),
31

32 offspring_pipeline=[
33 ops.random_selection,
34 ops.clone,
35 mutate_bitflip,
36 ops.pool(size=1)],
37

38 evaluated_probe=track_workers_func,
39 pop_probe=track_pop_func)
40

41 print(f'Final pop: \n{pformat(final_pop)}')

The above example is quite different from the synchronous code given earlier. Unlike, with the synchronous code,
the asynchronous code does provide a monolithic function entry point, asynchronous.steady_state(). The first thing to
note is that by nature this EA has a birth budget, not a generation budget, and which is set to 500 in MAX_BIRTHS,
and passed in via the births parameter. We also need to know the size of the initial population, which is given in
init_pop_size. And, of course, we need the size of the population that is perpetually updated during the lifetime of the
run, and which is passed in via the pop_size parameter.

The representation parameter we have seen before in the other monolithic functions, such as generational_ea, which
encapsulates the mechanisms for making an individual and how the individual’s state is stored. In this case, because it’s
the MAX ONES problem, we use the IdentityDecoder because we want to use the raw bits as is, and we specify a factory

5.2. Asynchronous fitness evaluations 131

LEAP: Library for Evolutionary Algorithms in Python Documentation, Release v0.9dev

function for creating binary sequences GENOME_LENGTH in size; and, lastly, we override the default class with a
new class, DistributedIndividual, that contains some additional bookkeeping useful for an ASEA, and is described
later.

The offspring_pipeline differs from the usual LEAP pipelines. That is, a LEAP pipeline is usally a set of operators that
define a workflow for creating offspring from a set of prospective parents. In this case, the pipeline is for creating a
single offspring from an implied population of prospective parents to be evaluated on a recently available dask worker;
essentially, as a dask worker finishes evaluating an individual, this pipeline will be used to create a single offspring to
be assigned to that worker for evaluation. This gives the user maximum flexibility in how that offspring is created by
choosing a selection operator followed by perturbation operators deemed suitable for the given problem. (Not forgetting
the critical clone operator, the absence of which will cause selected parents to be modified by any applied mutation or
crossover operators.)

There are two optional callback function reporting parameters, evaluated_probe and pop_probe. evaluated_probe takes
a single Individual class, or subclass, as an argument, and can be used to write out that individual’s state in a desired
format. distrib.probe.log_worker_location can be passed in as this argument to write each individual’s state as a CSV
row to a file; by default it will write to sys.stdout. The pop_probe parameter is similar, but allows for taking snapshots
of the hidden population at preset intervals, also in CSV format.

Also noteworthy is that the Client has a scheduler_file specified, which indicates that a dask scheduler and one or more
dask workers have already been started beforehand outside of LEAP and are awaiting tasking to evaluate individuals.

There are three other optional parameters to steady_state, which are summarized as follows:

inserter
takes a callback function of the signature (individual, population, max_size) where individual is the
newly evaluated individual that is a candidate for inserting into the population, and which is the
internal population that steady_state updates. The value for max_size is passed in by steady_state
that is the user stipulated population size, and is used to determine if the individual should just be
inserted into the population when at the start of the run it has yet to reach capacity. That is, when a
user invokes steady_state, they specify a population size via pop_size, and we would just normally
insert individuals until the population reaches pop_size in capacity, then the function will use criteria
to determine whether the individual is worthy of being inserted. (And, if so, at the removal of an
individual that was already in the population. Or, colloquially, someone is voted off the island.)

There are two provided inserters, steady_state.tournament_insert_into_pop and
greedy_insert_into_pop. The first will randomly select an individual from the internal popu-
lation, and will replace it if its fitness is worse than the new individual. The second will compare
the new individual with the current worst in the population, and will replace that individual if it is
better. The default for inserter is to use the greedy_insert_into_pop.

Of course you can write your own if either of these two inserters do not meet your needs.

count_nonviable
is a boolean that, if True, means that individuals that are non- viable are counted towards the birth
budget; by default, this is False. A non-viable individual is one where an exception was thrown
during evaluation. (E.g., an individual poses a deep-learner configuration that does not make sense,
such as incompatible adjacent convolutional layers, and pytorch or tensorflow throws an exception.)

context
contains global state where the running number of births and non-viable individuals is kept. This
defaults to context.

132 Chapter 5. Distributed LEAP

LEAP: Library for Evolutionary Algorithms in Python Documentation, Release v0.9dev

5.2.2 DistributedIndividual

DistributedIndividual is a subclass of RobustIndividual that contains some additional state that may be useful for dis-
tributed fitness evaluations.

uuid
is UUID assigned to that individual upon creation

birth_id
is a unique, monotonically increasing integer assigned to each indidividual on creation, and denotes
its birth order

start_eval_time
is when evaluation began for this individul, and is in time_t format

stop_eval_time
when evaluation completed in time_t format

This additional state is set in distrib.evaluate.evaluate() and is_viable and exception are set as with the base class,
core.Individual.

Note: The uuid is useful if one wanted to save, say, a model or some other state in a file; using the uuid in the file
name will make it easier to associate the file with a given individual later during a run’s post mortem analysis.

Note: The start_eval_time and end_eval_time can be useful for checking whether individuals that take less time
to evaluate come to dominate the population, which can be important in ASEA parameter tuning. E.g., initially the
population will come to be dominated by individuals that evaluated quickly even if they represent inferior solutions;
however, eventually, better solutions that take longer to evaluate will come to dominate the population; so, if one
observes that shorter solutions still dominate the population, then increasing the max_births should be considered, if
feasible, to allow time for solutions that need longer to evaluate time to make a representative presence in the population.

5.2.3 Separate Examples

There is also a jupyter notebook walkthrough for the asynchronous implementation, exam-
ples/distributed/simple_async_distributed.ipynb. Moreover, there is standalone code in exam-
ples/distributed/simple_async_distributed.py.

5.2. Asynchronous fitness evaluations 133

LEAP: Library for Evolutionary Algorithms in Python Documentation, Release v0.9dev

134 Chapter 5. Distributed LEAP

CHAPTER

SIX

MULTIOBJECTIVE OPTIMIZATION

LEAP supports multi-objective optimization via an implementation of [NSGA-II]. There are two ways of using this
functionality – using a single function, leap_ec.mulitobjective.nsga2.generalized_nsga_2 , or by assembling a bespoke
NSGA-II using pipeline operators. We will cover both approaches here.

6.1 Using generalized_nsga_2

leap_ec.mulitobjective.nsga2.generalized_nsga_2 is similar to other LEAP metaheuristic functions, such as genera-
tional_ea. It has arguments for specifying the maximum number of generations, population size, stopping criteria,
problem representation, and others.

Note that by default a faster rank sorting algorithm is used [Burlacu], but if it is important to use the original NSGA-II
rank sorting algorithm, then that can be provided by specifying leap_ec.mulitobjective.ops.fast_nondominated_sort for
the rank_func argument.

6.1.1 Example

1 from leap_ec.representation import Representation
2 from leap_ec.ops import random_selection, clone, evaluate, pool
3 from leap_ec.real_rep.initializers import create_real_vector
4 from leap_ec.real_rep.ops import mutate_gaussian
5 from leap_ec.multiobjective.nsga2 import generalized_nsga_2
6 from leap_ec.multiobjective.problems import SCHProblem
7 pop_size = 10
8 max_generations = 5
9 final_pop = generalized_nsga_2(

10 max_generations=max_generations, pop_size=pop_size,
11

12 problem=SCHProblem(),
13

14 representation=Representation(
15 initialize=create_real_vector(bounds=[(-10, 10)])
16),
17

18 pipeline=[
19 random_selection,
20 clone,
21 mutate_gaussian(std=0.5, expected_num_mutations=1),
22 evaluate,

(continues on next page)

135

LEAP: Library for Evolutionary Algorithms in Python Documentation, Release v0.9dev

(continued from previous page)

23 pool(size=pop_size),
24]
25)

The above code snippet shows how to set up NSGA-II for one of the benchmark multiobjective problems, SCHProblem.
We specify the maximum number of generations, the population size, representation, and give a reproduction pipeline.
The representation is a simple single valued gene, that we see on line 15 is initialized in the range of [-10,10].

The reproduction pipeline given on lines 18-24 is used to create the offspring for each generation. It is spliced into
another pipeline so that the offspring created via this pipeline are then passed to the rank sorting and crowding distance
functions. Then truncation selection based on rank and crowding distance is used to return the final set of offspring
that then become the parents for the next generation.

6.2 Creating a tailored NSGA-II

However, it may be desirable to have fine-grained control over the NSGA-II implementation, maybe to more conve-
niently perform some necessary ancillary calculations during a run. In that case, the lower-level NSGA-II operators
can be directly used in a full LEAP pipeline, as shown below.

6.2.1 Example

1 # represenations have a convenience function for creating
2 # initial random population
3 parents = representation.create_population(int(config.ea.pop_size),
4 problem=problem)
5

6 generation_counter = util.inc_generation(context=context)
7

8 # Scatter the initial parents to dask workers for evaluation
9 parents = synchronous.eval_population(parents, client=client)

10

11 context['std'] = np.array([0.001, # start_lr
12 0.0001, # stop_lr
13 0.0625, # rcut
14 0.0625, # rcut smth
15 0.0625, # training batch
16 0.0625, # valid. batch
17 0.0625, # scale by worker
18 0.0625, # des activ func
19 0.0625, # fitting activ func
20])
21

22 try:
23 while generation_counter.generation() < max_generations:
24 generation_counter() # Increment to the next generation
25

26 offspring = pipe(parents,
27 ops.random_selection,
28 ops.clone,
29 mutate_gaussian(

(continues on next page)

136 Chapter 6. Multiobjective Optimization

LEAP: Library for Evolutionary Algorithms in Python Documentation, Release v0.9dev

(continued from previous page)

30 std=context['std'],
31 expected_num_mutations='isotropic', # zap all genes
32 hard_bounds=DeepMDRepresentation.bounds),
33 eval_pool(client=client, size=len(parents)),
34 rank_ordinal_sort(parents=parents),
35 crowding_distance_calc,
36 ops.truncation_selection(size=len(parents),
37 key=lambda x: (-x.rank,
38 x.distance)),
39)
40

41 parents = offspring # Make offspring new parents for next generation
42

43 context['std'] *= .85

The above code demonstrates how to use the NSGA operators, rank_ordinal_sort and crowding_distance_calc, in
a LEAP reproductive operator pipeline to do the rank sorting and crowding distance calculation on newly formed
offspring. The truncation selection operator uses the rank and distances that are added as attributes to individuals as
they pass through the pipeline by those operators.

Also shown is how to use Dask to perform parallel fitness evaluations. On line 9 the initial random population is
scattered to preassigned Dask workers for evaluation. Line 33 performs a similar operation with newly created offspring.

And, finally, this shows how to add some ancillary computation, in this case updating a vector of standard deviations
to be used with the Gaussian mutation operator. The vector is assigned to the LEAP global dictionary, context, on line
11, and is updated every generation on line 43. The mutation operator, itself, is on line 29. Although a special pipeline
operator could have been made to do this same update to enable use of generalized_nsga_2 , it was cleaner to separate
out this update outside the pipeline.

6.3 Representing multiple fitnesses

Normally a fitness is a real-valued scalar, but in the case of multiple objectives, LEAP uses a numpy array of floats for
fitnesses, with each element of the array corresponding to one objective. Be mindful to not use a python tuple or list
to hold fitnesses.

Another caveat if using DistributedIndividual is that class will assign NaNs as fitnesses if something should go wrong
while evaluating an individual’s fitness. E.g., if optimizing a neural network architecture and exception is thrown during
model training due to a hardware failure. This poses a problem for rank sorting since sorting floating point values with
NaNs leads to undefined behavior. In which case it’s advisable to create a`DistributedIndividual` subclass that overrides
this behavior and assigns, say, MAXINT or -MAXINT (as appropriate for maximizing or minimizing objectives) for
fitnesses where there was a problem in performing the fitness evaluation.

6.3. Representing multiple fitnesses 137

LEAP: Library for Evolutionary Algorithms in Python Documentation, Release v0.9dev

6.4 Asynchronous steady-state multiobjective optimization

LEAP also supports a distributed asynchronous-steady state version of NSGA-II. This is useful for HPC clusters where
it is desirable to have a large number of workers evaluating individuals in parallel. Moreover, this allows for minimizing
worker idle time in that new offspring are allocated to workers that finished evaluating their previous individuals. This is
in contrast to the traditional synchronous version of NSGA-II where all workers must finish evaluating their individuals
before the next generation can be created; within an HPC context this would mean that some workers would be idle
while waiting for others to finish, thus wasting computational resources. As with the other distributed support in LEAP,
this functionality is implemented using Dask, and so a Dask client must be provided.

The asynchronous steady-state version of NSGA-II is implemented in leap_ec.multiobjective.asynchronous.
steady_state_nsga_2(). An example of use is in the examples/distributed/multiobjective_async_distributed.ipynb
notebook.

6.5 References

138 Chapter 6. Multiobjective Optimization

CHAPTER

SEVEN

LEAP COOKBOOK

This is a collection of “recipes” in the spirit of the O’Reilly “Cookbook” series. That is, it’s a collection of common
howtos and examples for using LEAP.

7.1 Enforcing problem bounds constraints

There are two overall types of bounds enforcement within EAs, soft bounds and hard bounds:

soft bounds
where the boundaries are enforced only at initialization, but mutation allows for exploring beyond
those initial boundaries

hard bounds
boundaries are strictly enforced at initialization as well as during mutation and crossover. In the
latter case this can be done by clamping new values to a given range, or flagging an individual that
violates such constraints as non-viable by throwing an exception during fitness evaluation. (That is,
during evaluation, exceptions are caught, which causes the individual’s fitness to be set to NaN and
its is_viable internal flag set to false; then selection should hopefully weed out this individual from
the population.)

7.1.1 Bounds for initialization

When initializing a population with genomes of numeric values, such as integers or real-valued numbers, the bounds
for each gene needs to be specified so that we know in what range to initialize the genes.

For real-valued genomes, leap_ec.real_rep.create_real_vector() takes a list of tuples where each tuple is a
pair of lower and upper bounds for each gene. For example, the following initializes a genome with three genes, where
each gene is in the range [0, 1], [0, 1], and [-1, 100], respectively:

from leap_ec.real_rep import create_real_vector
bounds = [(0, 1), (0, 1), (-1, 100)]
genome = create_real_vector(bounds)

For integer-valued genomes, leap_ec.int_rep.create_int_vector() works identically. That is, cre-
ate_int_vector accepts a collection of tuples of pairs of lower and upper bounds for each gene.

139

LEAP: Library for Evolutionary Algorithms in Python Documentation, Release v0.9dev

7.1.2 Enforcing bounds during mutation

That’s great for _initializing_ a population, but what about when we mutate? If no precautions are taken, then mutation
is free to create genes that are well outside the initialization bounds. Fortunately for any numeric mutation operator,
we can specify a bounds constraint that will be enforced during mutation. The functions leap_ec.int_rep.ops.
mutate_randint(), leap_ec.int_rep.ops.binomial(), leap_ec.real_rep.ops.mutate_gaussian() ac-
cept a bounds parameter that, as with the initializers, is a list of tuples of lower and upper bounds for each gene.
Mutations that stray outside of these bounds are clamped to the nearest boundary. numpy.clip is used to efficiently clip
the values to the bounds.

140 Chapter 7. LEAP Cookbook

CHAPTER

EIGHT

COMMON PROBLEMS

Here we address common problems that may arise when using LEAP.

8.1 min() returns the worst individual for minimization problems

min() and max() works the opposite you may expect for minimization problems because the < operator has been overri-
den to consider fitness scalars that are numerically less than than another to be “better”. So min() takes into consideration
the problem semantics not the raw number values.

E.g., for a given minimization problem:

min(parents).fitness
Out[2]: 66.49057507514954
max(parents).fitness
Out[3]: 59.87865996360779

The above shows that the value 59.87865996360779 is “better” than 66.49057507514954 even though _numerically_
it is less than the other value.

It was important for LEAP to override the < operator for `Individual`s because it uses native sort operations to find the
“best” and “worst”, and so minimization vs. maximization semantics needed to be taken into account.

8.2 Missing pipeline operator arguments

If you see an error like this:

` TypeError: mutate_binomial() missing 1 required positional argument:
'next_individual' `

The corresponding code may look like this:

int_ops.mutate_binomial(std=[context['leap']['std0'],
context['leap']['std1']],

hard_bounds=[(1, 127), (0, 255)],
probability=context['leap']['mutation']),

In this case, the API for leap_ec.int_rep.ops.mutate_binomial() had changed such that the argument
hard_bounds had been shortened to bounds. Renaming that argument to bounds fixed this instance of the problem.

In general, if you see an error like this, you should check the API documentation and ensure that all mandatory function
arguments are getting passed into the pipeline operator.

141

LEAP: Library for Evolutionary Algorithms in Python Documentation, Release v0.9dev

142 Chapter 8. Common Problems

CHAPTER

NINE

ROADMAP

Please see the CHANGELOG.md for a history of feature implementations.

Future features, in no particular order of priority:

• Documentation
– add write-up on probes

– more recipes for common use cases in “cookbook”

– technical report

• Checkpoint / restart support

• Asynchronous multiobjective optimization

• Hall of fame

• Rule systems
– Mich Approach

– Pitt Approach

• Koza-style Genetic Programming (GP)

• Estimation of Distribution Algorithms (EDA)
– Covariance Matrix Adaptation Evolution Strategy (CMA-ES)

– Population-based Incremental Learning (PBIL)

– Bayesian Optimization Algorithm (BOA)

143

LEAP: Library for Evolutionary Algorithms in Python Documentation, Release v0.9dev

144 Chapter 9. Roadmap

CHAPTER

TEN

LEAP_EC PACKAGE

10.1 Subpackages

10.1.1 leap_ec.binary_rep package

Submodules

leap_ec.binary_rep.decoders module

Decoders for binary representations.

class leap_ec.binary_rep.decoders.BinaryToIntDecoder(*descriptors)
Bases: Decoder

A decoder that converts a Boolean-vector genome into an integer-vector phenome.

decode(genome, *args, **kwargs)
Converts a Boolean genome to an integer-vector phenome by interpreting each segment of the genome as
low-endian binary number.

Parameters
genome – a list of 0s and 1s representing a Boolean genome

Returns
a corresponding list of ints representing the integer-vector phenome

For example, a Boolean representation of [1, 12, 5] can be decoded like this:

>>> import numpy as np
>>> d = BinaryToIntDecoder(4, 4, 4)
>>> b = np.array([0,0,0,1, 1, 1, 0, 0, 0, 1, 1, 0])
>>> d.decode(b)
array([1, 12, 6])

class leap_ec.binary_rep.decoders.BinaryToIntGreyDecoder(*descriptors)
Bases: BinaryToIntDecoder

This performs Gray encoding when converting from binary strings.

See also: https://en.wikipedia.org/wiki/Gray_code#Converting_to_and_from_Gray_code

For example, a grey encoded Boolean representation of [1, 8, 4] can be decoded like this:

145

https://en.wikipedia.org/wiki/Gray_code#Converting_to_and_from_Gray_code

LEAP: Library for Evolutionary Algorithms in Python Documentation, Release v0.9dev

>>> import numpy as np
>>> d = BinaryToIntGreyDecoder(4, 4, 4)
>>> b = np.array([0,0,0,1, 1, 1, 0, 0, 0, 1, 1, 0])
>>> d.decode(b)
array([1, 8, 4])

decode(genome, *args, **kwargs)
Converts a Boolean genome to an integer-vector phenome by interpreting each segment of the genome as
low-endian binary number.

Parameters
genome – a list of 0s and 1s representing a Boolean genome

Returns
a corresponding list of ints representing the integer-vector phenome

For example, a Boolean representation of [1, 12, 5] can be decoded like this:

>>> import numpy as np
>>> d = BinaryToIntDecoder(4, 4, 4)
>>> b = np.array([0,0,0,1, 1, 1, 0, 0, 0, 1, 1, 0])
>>> d.decode(b)
array([1, 12, 6])

class leap_ec.binary_rep.decoders.BinaryToRealDecoder(*segments)
Bases: BinaryToRealDecoderCommon

class leap_ec.binary_rep.decoders.BinaryToRealDecoderCommon(*segments)
Bases: Decoder

Common implementation for binary to real decoders.

The base classes BinaryToRealDecoder and BinaryToRealGreyDecoder differ by just the underlying binary to
integer decoder. Most all the rest of the binary integer to real-value decoding is the same, hence this class.

decode(genome, *args, **kwargs)
Convert a list of binary values into a real-valued vector.

class leap_ec.binary_rep.decoders.BinaryToRealGreyDecoder(*segments)
Bases: BinaryToRealDecoderCommon

leap_ec.binary_rep.initializers module

Used to initialize binary sequences

leap_ec.binary_rep.initializers.create_binary_sequence(length)
A closure for initializing a binary sequences for binary genomes.

Parameters
length – how many genes?

Returns
a function that, when called, generates a binary vector of given length

E.g., can be used for Individual.create_population

146 Chapter 10. leap_ec package

LEAP: Library for Evolutionary Algorithms in Python Documentation, Release v0.9dev

>>> from leap_ec.decoder import IdentityDecoder
>>> from . problems import MaxOnes
>>> population = Individual.create_population(10, create_binary_sequence(length=10),
... decoder=IdentityDecoder(),
... problem=MaxOnes())

leap_ec.binary_rep.ops module

Binary representation specific pipeline operators.

leap_ec.binary_rep.ops.genome_mutate_bitflip(genome: ndarray = '__no__default__',
expected_num_mutations: float = None, probability: float
= None)→ ndarray

Perform bitflip mutation on a particular genome.

This function can be used by more complex operators to mutate a full population (as in mutate_bitflip), to work
with genome segments (as in leap_ec.segmented.ops.apply_mutation), etc. This way we don’t have to copy-and-
paste the same code for related operators.

Parameters
• genome – of binary digits that we will be mutating

• expected_num_mutations – on average how many mutations are we expecting?

Returns
mutated genome

leap_ec.binary_rep.ops.mutate_bitflip(next_individual: Iterator = '__no__default__',
expected_num_mutations: float = None, probability: float = None)
→ Iterator

Perform bit-flip mutation on each individual in an iterator (population).

This assumes that the genomes have a binary representation.

>>> from leap_ec.individual import Individual
>>> from leap_ec.binary_rep.ops import mutate_bitflip
>>> import numpy as np

>>> original = Individual(np.array([1, 1]))
>>> op = mutate_bitflip(expected_num_mutations=1)
>>> pop = iter([original])
>>> mutated = next(op(pop))

Parameters
• next_individual – to be mutated

• expected_num_mutations – on average how many mutations done (specificy either this
or probability, but not both)

• probability – the probability of mutating any given gene (specificy either this or ex-
pected_num_mutations, but not both)

Returns
mutated individual

10.1. Subpackages 147

LEAP: Library for Evolutionary Algorithms in Python Documentation, Release v0.9dev

leap_ec.binary_rep.ops.random()→ x in the interval [0, 1).

leap_ec.binary_rep.problems module

A set of standard EA problems that rely on a binary-representation

class leap_ec.binary_rep.problems.DeceptiveTrap(maximize=True)
Bases: ScalarProblem

A simple bi-modal function whose global optimum is the Boolean vector of all 1’s, but in which fitness decreases
as the number of 1’s in the vector increases—giving it a local optimum of [0, . . . , 0] with a very wide basin of
attraction.

evaluate(phenome)

>>> import numpy as np
>>> p = DeceptiveTrap()

The trap function has a global maximum when the number of one’s is maximized:

>>> p.evaluate(np.array([1, 1, 1, 1, 1, 1, 1, 1, 1, 1]))
10

It’s minimized when we have just one zero: >>> p.evaluate(np.array([1, 1, 1, 1, 0, 1, 1, 1, 1, 1])) 0

And has a local optimum when we have no ones at all: >>> p.evaluate(np.array([0, 0, 0, 0, 0, 0, 0, 0, 0, 0]))
9

class leap_ec.binary_rep.problems.ImageProblem(path, maximize=True, size=(100, 100))
Bases: ScalarProblem

A variation on max_ones that uses an external image file to define a binary target pattern.

evaluate(phenome)
Evaluate the given phenome.

Practitioners must over-ride this member function.

Note that by default the individual comparison operators assume a maximization problem; if this is a min-
imization problem, then just negate the value when returning the fitness.

Parameters
phenome – the phenome to evaluate (this will not be modified)

Returns
the fitness value

class leap_ec.binary_rep.problems.LeadingOnes(target_string=None, maximize=True)
Bases: ScalarProblem

Implementation of the classic leading-ones problem, where the individuals are represented by a bit vector.

By default, the number of consecutve 1’s starting from the beginning of the phenome are maximized:

>>> p = LeadingOnes()

But an optional target string can also be specified, in which case the number of matches to the target are maxi-
mized:

148 Chapter 10. leap_ec package

LEAP: Library for Evolutionary Algorithms in Python Documentation, Release v0.9dev

>>> import numpy as np
>>> p = LeadingOnes(target_string=np.array([1, 1, 0, 1, 1, 0, 0, 0 ,0]))

evaluate(phenome)
By default this counts the number of consecutive 1’s at the start of the string:

>>> import numpy as np
>>> p = LeadingOnes()
>>> p.evaluate(np.array([1, 1, 1, 1, 0, 1, 0, 1, 1]))
4

Or, if a target string was given, we count matches:

>>> p = LeadingOnes(target_string=np.array([1, 1, 0, 1, 1, 0, 0, 0 ,0]))
>>> p.evaluate(np.array([1, 1, 1, 1, 0, 1, 0, 1, 1]))
2

class leap_ec.binary_rep.problems.MaxOnes(target_string=None, maximize=True)
Bases: ScalarProblem

Implementation of the classic max-ones problem, where the individuals are represented by a bit vector.

By default, the number of 1’s in the phenome are maximized.

>>> p = MaxOnes()

But an optional target string can also be specified, in which case the number of matches to the target are maxi-
mized:

>>> import numpy as np
>>> p = MaxOnes(target_string=np.array([1, 1, 1, 1, 1, 0, 0, 0 ,0]))

evaluate(phenome)
By default this counts the number of 1’s:

>>> from leap_ec.individual import Individual
>>> import numpy as np
>>> p = MaxOnes()
>>> p.evaluate(np.array([0, 0, 1, 1, 0, 1, 0, 1, 1]))
5

Or, if a target string was given, we count matches:

>>> from leap_ec.individual import Individual
>>> import numpy as np
>>> p = MaxOnes(target_string=np.array([1, 1, 1, 1, 1, 0, 0, 0 ,0]))
>>> p.evaluate(np.array([0, 0, 1, 1, 0, 1, 0, 1, 1]))
3

class leap_ec.binary_rep.problems.TwoMax(maximize=True)
Bases: ScalarProblem

A simple bi-modal function that returns the number of 1’s if there are more 1’s than 0’s, else the number of 0’s.

Also known as the “Twin-Peaks” problem.

10.1. Subpackages 149

LEAP: Library for Evolutionary Algorithms in Python Documentation, Release v0.9dev

evaluate(phenome)

>>> import numpy as np
>>> p = TwoMax()

The TwoMax problems returns the number over 1’s if they are in the majority:

>>> p.evaluate(np.array([1, 1, 1, 1, 1, 1, 1, 0, 0, 0]))
7

Else the number of zeros: >>> p.evaluate(np.array([0, 0, 0, 1, 0, 0, 0, 1, 1, 1])) 6

Module contents

10.1.2 leap_ec.contrib package

Subpackages

leap_ec.contrib.transfer package

Submodules

leap_ec.contrib.transfer.sequential module

Experimental algorithms for sequential evolutionary transfer.

This module provides general mechanisms that allow an algorithm to learn from experience on past problems, and to
reuse that experience on future problems.

class leap_ec.contrib.transfer.sequential.PopulationSeedingRepertoire(initialize, algorithm,
repfile=None)

Bases: object

A repertoire method that works by seeding the population with individuals that were successful on past problems.

This works by injecting an initialize function into the wrapped algorithm’s parameterization. During training,
we inject a standard initializer (i.e. that create a random population), but when applying the repertoire, we use a
special initializer that draws individuals from the repertoire’s memory.

Parameters
• initialize – a standard initializer to create random populations during training.

• algorithm – the wrapped algorithm, which should take an initialize argument.

• repfile – an optional path to save the repertoire’s memory to.

apply(problem, **kwargs)
Solve a new problem by injecting the all the individuals from the repertoire into the new initial population.

build_repertoire(problems, problem_kwargs)
Train the repertoire on a set of problems.

The best solution found on each problem will be saved into the repertoire.

150 Chapter 10. leap_ec package

LEAP: Library for Evolutionary Algorithms in Python Documentation, Release v0.9dev

export(path)
Write the repertoire of saved individuals out to a CSV file.

class leap_ec.contrib.transfer.sequential.Repertoire

Bases: ABC

Abstract definition of a ‘repertoire’ algorithm for evolutionary transfer.

A repertoire is a wrapper for an algorithm that can be trained on a set of problems, from which is learns and
encodes some form of memory, which can be applied to new problems.

abstract apply(problem, algorithm)

Apply the repertoire to a new problem.

Parameters
• problem – the Problem to solve.

• algorithm – the algorithm to apply.

abstract build_repertoire(problems, initialize, algorithm)

Train the repertoire on a set of problems.

Parameters
• problems – a list of Problems to train on.

• initialize – a function that generates a population.

• algorithm – an algorithm function, which may be parameterized with an initialize func-
tion.

leap_ec.contrib.transfer.sequential.initialize_seeded(initialize, seed_pop)
A population initializer that injects a fixed list of seed individuals into the population, and fills the remaining
space with newly generated individuals.

>>> import numpy as np
>>> from leap_ec.real_rep.initializers import create_real_vector
>>> random_init = create_real_vector(bounds=[[0, 0]] * 2)
>>> init = initialize_seeded(random_init, [np.array([5.0, 5.0]), np.array([4.5, -
→˓6])])
>>> [init() for _ in range(5)]
[array([5., 5.]), array([4.5, -6.]), array([0., 0.]), array([0., 0.]), array([0.,␣
→˓0.])]

Module contents

Submodules

leap_ec.contrib.analysis module

Module contents

10.1.3 leap_ec.distrib package

Submodules

10.1. Subpackages 151

LEAP: Library for Evolutionary Algorithms in Python Documentation, Release v0.9dev

leap_ec.distrib.asynchronous module

This provides an asynchronous steady-state fitness evaluation pipeline operator.

A common feature here is a population of evaluated individuals that is asynchronously updated via dask.

leap_ec.distrib.asynchronous.eval_population(population, client, context={'leap': {'distrib':
{'non_viable': 0}, 'generation': 100}})

Concurrently evaluate all the individuals in the given population

Parameters
• population – to be evaluated

• client – dask client

• context – for storing count of non-viable individuals

Returns
dask distrib iterator for futures

leap_ec.distrib.asynchronous.greedy_insert_into_pop(individual, pop, max_size)
Insert the given individual into the pop of evaluated individuals.

This is greedy because we always compare the new individual with the current weakest in the pop. This is similar
to tournament selection.

Just insert individuals if the pop isn’t at capacity yet

Parameters
• individual – that was just evaluated

• pop – of already evaluated individuals

Returns
None

leap_ec.distrib.asynchronous.replace_if(new_individual, pop, index)
Convenience function for possibly replacing pop[index] individual with new_individual depending on which has
higher fitness.

Parameters
• new_individual – is a newly evaluated individual

• pop – of already evaluated individuals

• index – of individual in pop to be compared against

Returns
None

leap_ec.distrib.asynchronous.steady_state(client, max_births, init_pop_size, pop_size, representation,
problem, offspring_pipeline, inserter=<function
greedy_insert_into_pop>, count_nonviable=False,
evaluated_probe=None, pop_probe=None, context={'leap':
{'distrib': {'non_viable': 0}, 'generation': 100}})

Implements an asynchronous steady-state EA

Parameters
• client – Dask client that should already be set-up

• max_births – how many births are we allowing?

152 Chapter 10. leap_ec package

LEAP: Library for Evolutionary Algorithms in Python Documentation, Release v0.9dev

• init_pop_size – size of initial population sent directly to workers at start

• pop_size – how large should the population be?

• representation – of the individuals

• problem – to be solved

• offspring_pipeline – for creating new offspring from the pop

• inserter – function with signature (new_individual, pop, popsize) used to insert newly
evaluated individuals into the population; defaults to greedy_insert_into_pop()

• count_nonviable – True if we want to count non-viable individuals towards the birth bud-
get

• evaluated_probe – is a function taking an individual that is given the next evaluated indi-
vidual; can be used to print newly evaluated individuals

• pop_probe – is an optional function that writes a snapshot of the population to a CSV for-
matted stream ever N births

Returns
the population containing the final individuals

leap_ec.distrib.asynchronous.tournament_insert_into_pop(individual, pop, max_size)
Insert the given individual into the pop of evaluated individuals.

Randomly select an individual in the pop, and the individual will replace the selected individual iff it has a better
fitness. This is essentially binary tournament selection.

Just insert individuals if the pop isn’t at capacity yet

TODO as with tournament selection, we should have an optional k to specify the tournament size. However, we
have to be mindful that this is already k=2, so we would have to draw k-1 individuals from the population for
comparison.

Parameters
• individual – that was just evaluated

• pop – of already evaluated individuals

• max_size – of the pop

Returns
None

leap_ec.distrib.evaluate module

contains common evaluate() used in sync.eval_pool and async.eval_pool

leap_ec.distrib.evaluate.evaluate(individual='__no__default__', context={'leap': {'distrib': {'non_viable':
0}, 'generation': 100}})

concurrently evaluate the given individual

This is what’s invoked on each dask worker to evaluate each individual.

We log the start and end times for evaluation.

An individual is viable if an exception is NOT thrown, else it is NOT a viable individual. If not viable, we
increment the context[‘leap’][‘distrib’][‘non_viable’] count to track such instances.

This function sets:

10.1. Subpackages 153

LEAP: Library for Evolutionary Algorithms in Python Documentation, Release v0.9dev

individual.start_eval_time has the time() of when evaluation started. individual.stop_eval_time has the time() of
when evaluation finished. individual.is_viable is True if viable, else False individual.exception will be assigned
any raised exceptions individual.fitness will be NaN if not viable, else the calculated fitness individual.hostname
is the name of the host on which this individual was evaluated individual.pid is the process ID associated with
evaluating the individual

Parameters
individual – to be evaluated

Returns
evaluated individual

leap_ec.distrib.evaluate.is_viable(individual)
evaluate.evaluate() will set an individual’s fitness to NaN and the attributes is_viable to False, and will assign any
exception triggered during the individuals evaluation to exception. This just checks the individual’s is_viable; if
it doesn’t have one, this assumes it is viable.

Parameters
individual – to be checked if viable

Returns
True if individual is viable

leap_ec.distrib.individual module

Subclass of core.Individual that adds some state relevant for distrib runs.

Adds:

• uuid for each individual

• birth ID, a unique birth number; first individual has ID 0, the last N-1.

class leap_ec.distrib.individual.DistributedIndividual(genome, decoder=None, problem=None)
Bases: RobustIndividual

birth_id = count(202)

Core individual that has unique UUID and birth ID.

clone()

Create a ‘clone’ of this Individual, copying the genome, but not fitness.

The fitness of the clone is set to None. A new UUID is generated and assigned to sefl.uuid. The parents set
is updated to include the UUID of the parent. A shallow copy of the parent is made, too, so that ancillary
state is also copied.

A deep copy of the genome will be created, so if your Individual has a custom genome type, it’s important
that it implements the __deepcopy__() method.

>>> from leap_ec.binary_rep.problems import MaxOnes
>>> from leap_ec.decoder import IdentityDecoder
>>> import numpy as np
>>> genome = np.array([0, 1, 1, 0])
>>> ind = Individual(genome, IdentityDecoder(), MaxOnes())
>>> ind_copy = ind.clone()
>>> ind_copy.genome == ind.genome
array([True, True, True, True])
>>> ind_copy.problem == ind.problem

(continues on next page)

154 Chapter 10. leap_ec package

LEAP: Library for Evolutionary Algorithms in Python Documentation, Release v0.9dev

(continued from previous page)

True
>>> ind_copy.decoder == ind.decoder
True

leap_ec.distrib.logger module

This provides a dask logging plugin that reports the hostname, worker ID, and process ID for each worker. This is
useful for checking that all workers have been sanely assigned to targeted resources.

Note that once this plugin is installed that dask will ensure that each worker restarted after a failure gets the plugin
re-installed, too.

class leap_ec.distrib.logger.EvaluatorLogFilter

Bases: Filter

Convenience for adding hostname and worker ID to log messages

Cribbed from https://stackoverflow.com/questions/55584115/python-logging-how-to-track-hostname-in-logs

filter(record)
Determine if the specified record is to be logged.

Is the specified record to be logged? Returns 0 for no, nonzero for yes. If deemed appropriate, the record
may be modified in-place.

class leap_ec.distrib.logger.WorkerLoggerPlugin(verbose=False, *args, **kwargs)
Bases: WorkerPlugin

This dask worker plugin adds a logger for each worker that reports the hostname, worker ID, and process ID.

Usage:

client.register_worker_plugin(WorkerLoggerPlugin()) after dask client is setup.

Then in code sent to worker:

worker = get_worker() worker.logger.info(‘This is a log message’)

setup(worker: Worker)
This is invoked once for each worker on their startup. The scheduler will also ensure that all workers invoke
this.

setup_logger(worker)

teardown(worker: Worker)
Run when the worker to which the plugin is attached to is closed

leap_ec.distrib.probe module

A collection of probe functions tailored for distrib evaluation

leap_ec.distrib.probe.log_pop(update_interval, stream=<_io.TextIOWrapper name='<stdout>' mode='w'
encoding='UTF-8'>, header=True)

Regularly update a CSV formatted stream with snapshots of the given population.

This is useful for asynchronous.steady_state() to regularly probe the regularly updated population.

Parameters

10.1. Subpackages 155

https://stackoverflow.com/questions/55584115/python-logging-how-to-track-hostname-in-logs

LEAP: Library for Evolutionary Algorithms in Python Documentation, Release v0.9dev

• update_interval – how often should we write a row?

• stream – open stream to which to write rows

• header – True if we want a header for the CSV file

Returns
a function for saving regular population snapshots

leap_ec.distrib.probe.log_worker_location(stream=<_io.TextIOWrapper name='<stdout>' mode='w'
encoding='UTF-8'>, header=True)

When debugging dask distribution configurations, this function can be used to track what machine and process
was used to evaluate a given individual. Accumulates this information to the given stream as a CSV.

Suitable for being passed as the evaluated_probe argument for leap.distrib.asynchronous.steady_state().

Parameters
• stream – to which we want to write the machine details

• header – True if we want a header for the CSV file

Returns
a function for recording where individuals are evaluated

leap_ec.distrib.synchronous module

This provides a synchronous fitness evaluation pipeline operator.

leap_ec.distrib.synchronous.eval_pool(next_individual='__no__default__', client='__no__default__',
size='__no__default__', context={'leap': {'distrib': {'non_viable':
0}, 'generation': 100}})

concurrently evaluate size individuals

This is similar to ops.pool() in that it’s a “sink” for accumulating individuals by “pulling” individuals from
upstream the pipeline via next_individual. However, it’s also like ops.evaluate() in that these individuals are
concurrently evaluated via a map/reduce approach. We use dask to implement this evaluation mechanism.

If an exception is thrown while evaluating an individual, NaN is assigned as its fitness, individual.is_viable
is set to False, and the associated exception is assigned to individual.exception as a post mortem aid; also
core.context[‘leap’][‘distrib’][‘non_viables’] count is incremented if you want to track the number of non-viable
individuals (i.e., those that have an exception thrown during evaluation); just remember to reset that between
runs if that variable has been updated.

Parameters
• next_individual – iterator/generator for individual provider

• client – dask client through which we submit individuals to be evaluated

• size – how many individuals to evaluate simultaneously.

• context – for storing count of non-viable individuals

Returns
the pool of evaluated individuals

leap_ec.distrib.synchronous.eval_population(population='__no__default__', client='__no__default__',
context={'leap': {'distrib': {'non_viable': 0}, 'generation':
100}})

Concurrently evaluate all the individuals in the given population

156 Chapter 10. leap_ec package

LEAP: Library for Evolutionary Algorithms in Python Documentation, Release v0.9dev

Parameters
• population – to be evaluated

• client – dask client

• context – for storing count of non-viable individuals

Returns
evaluated population

Module contents

10.1.4 leap_ec.executable_rep package

Submodules

leap_ec.executable_rep.cgp module

Cartesian genetic programming (CGP) representation.

The CGPDecoder does most of the work here: it converts a linear genome into a graph structure, and wraps the latter
in a CGPExecutable (which knows how to execute the graph).

class leap_ec.executable_rep.cgp.CGPDecoder(primitives, num_inputs, num_outputs, num_layers,
nodes_per_layer, max_arity, prune: bool = True,
levels_back=None)

Bases: Decoder

Implements the genotype-phenotype decoding for Cartesian genetic programming (CGP).

A CGP genome is linear, but made up of one sub-sequence for each circuit element. In our version here, the first
gene in each sub-sequence indicates the primitive (i.e., function) that node computes, and the subsequence genes
indicate the inputs to that primitive.

That is, each node is specified by three genes [p_id, i_1, i_2], where p_id is the index of the node’s primitive,
and i_1, i_2 are the indices of the nodes that feed into it.

The sequence [0, 2, 3] indicates an element that computes the 0th primitive (as an index of the primitives list)
and takes its inputs from nodes 2 and 3, respectively.

bounds()

Return the (min, max) allowed value they every gene may assume, taking into account the levels structure.

These values should be used by initialization and mutation operators to ensure that CGP’s constraints are
met.

>>> primitives = [sum, lambda x: x[0] - x[1], lambda x: x[0] * x[1]]
>>> decoder = CGPDecoder(primitives, num_inputs=2, num_outputs=2, num_layers=2,␣
→˓nodes_per_layer=2, max_arity=2, levels_back=1)
>>> decoder.bounds()
[(0, 2), (0, 1), (0, 1), (0, 2), (0, 1), (0, 1), (0, 2), (2, 3), (2, 3), (0, 2),
→˓ (2, 3), (2, 3), (0, 5), (0, 5)]

check_constraints(next_individual: Iterator)
An operator that checks whether individual’s genomes satisfy the CGP constraints.

For example, say we have the following population:

10.1. Subpackages 157

LEAP: Library for Evolutionary Algorithms in Python Documentation, Release v0.9dev

>>> from leap_ec import Individual
>>> genome0 = np.array([0, 0, 1, 1, 0, 1, 2, 2, 3, 0, 2, 3, 4, 5])
>>> genome1 = np.array([0, 0, 1, 1, 0, 1, 2, 2, 3, 0, 2, 1, 4, 5])
>>> genome2 = np.array([0, 0, 1, 4, 0, 1, 2, 2, 3, 0, 2, 3, 4, 5])
>>> genome3 = np.array([0, 0, 1, 1, 0, 1, 2, 2, 3, 0, 2, 3, 4, 5, 3, 4, 5])
>>> genome4 = np.array([0.0, 0.0, 1.0, 1.0, 0, 1.0, 2.0, 2.0, 3.0, 0.0, 2.0, 3.
→˓0, 4.0, 5.0])
>>> population = iter([Individual(genome0),
... Individual(genome1),
... Individual(genome2),
... Individual(genome3),
... Individual(genome4)])

Then given this decoder:

>>> primitives = [sum, lambda x: x[0] - x[1], lambda x: x[0] * x[1]]
>>> decoder = CGPDecoder(primitives, num_inputs=2, num_outputs=2, num_layers=2,␣
→˓nodes_per_layer=2, max_arity=2, levels_back=1)

The first individual (genome0) satisfies the constraints:

>>> op = decoder.check_constraints
>>> next(op(population))
Individual<...>(...)

The next fails (genome1), however, because it violates the levels_back constraint:

>>> next(op(population))
Traceback (most recent call last):
...
ValueError: CGP constraints violated by individual: expected gene at locus 11␣
→˓to be between the values of (2, 3) (inclusive), but found a value of 1.

Then genome2 fails because it contains a cycle:

>>> next(op(population))
Traceback (most recent call last):
...
ValueError: CGP constraints violated by individual: expected gene at locus 3 to␣
→˓be between the values of (0, 2) (inclusive), but found a value of 4.

The new (genome3) fails because it has the incorrect genome length:

>>> next(op(population))
Traceback (most recent call last):
...
ValueError: CGP constraints violated by individual: genome of length 17 found,␣
→˓but expected 14 genes.

And the last (genome4) fails because the genes are of the wrong type:

>>> next(op(population))
Traceback (most recent call last):
...

(continues on next page)

158 Chapter 10. leap_ec package

LEAP: Library for Evolutionary Algorithms in Python Documentation, Release v0.9dev

(continued from previous page)

ValueError: CGP constraints violated by individual: genome must contain only␣
→˓integers, but the gene at locus 0 has a non-integral value of 0.0.

decode(genome, *args, **kwargs)
Decode a linear CGP genome into an executable circuit.

>>> primitives = [sum, lambda x: x[0] - x[1], lambda x: x[0] * x[1]]
>>> decoder = CGPDecoder(primitives, num_inputs=2, num_outputs=2, num_layers=2,␣
→˓nodes_per_layer=2, max_arity=2)
>>> genome = [0, 0, 1, 1, 0, 1, 2, 2, 3, 0, 2, 3, 4, 5]
>>> decoder.decode(genome)
<leap_ec.executable_rep.cgp.CGPExecutable object at ...>

get_input_sources(genome, layer, node)
Given a linear CGP genome, return the list of all of the input sources (as integers) which feed into the given
node in the given layer.

get_output_sources(genome)
Given a linear CGP genome, return the list of nodes that connect to each output.

get_primitive(genome, layer, node)
Given a linear CGP genome, return the primitive object for the given node in the given layer.

initializer()

Convenience method that returns an initialization function for creating integer-vector genomes that obey
this CGP representation’s constraints.

num_cgp_nodes()

Return the total number of nodes that will be in the resulting CGP graph, including inputs and outputs.

For example, a 2x2 CGP individual with 2 outputs and 2 inputs will have $4 + 2 + 2 = 8$ total graph nodes.

>>> decoder = CGPDecoder([sum], num_inputs=2, num_outputs=2, num_layers=2,␣
→˓nodes_per_layer=2, max_arity=2, levels_back=1)
>>> decoder.num_cgp_nodes()
8

num_genes()

The number of genes we expect to find in each genome. This will equal the number of outputs plus the total
number of genes needed to specify the nodes of the graph.

The number of inputs has no effect on the size of the genome.

For example, a 2x2 CGP individual with 2 outputs an a max_arity of 2 will have 14 genes: $3*4 = 12$
genes to specify the primitive and inputs (1 + 2) for each internal node, plus 2 genes to specify the circuit
outputs.

>>> decoder = CGPDecoder([sum], num_inputs=2, num_outputs=2, num_layers=2,␣
→˓nodes_per_layer=2, max_arity=2, levels_back=1)
>>> decoder.num_genes()
14

static prune_graph(graph, num_inputs: int, num_outputs: int)
Prune parts of the graph that do not feed into any of the output nodes.

10.1. Subpackages 159

LEAP: Library for Evolutionary Algorithms in Python Documentation, Release v0.9dev

class leap_ec.executable_rep.cgp.CGPExecutable(primitives, num_inputs, num_outputs, graph)
Bases: Executable

Represents a decoded CGP circuit, which can be executed on inputs.

class leap_ec.executable_rep.cgp.CGPWithParametersDecoder(primitives, num_inputs: int,
num_outputs: int, num_layers: int,
nodes_per_layer: int, max_arity: int,
num_parameters_per_node: int, prune:
bool = True, levels_back=None)

Bases: CGPDecoder

A CGP decoder that takes a genome with two segments: an integer vector defining the usual CGP genome
(functions and connectivity), and an auxiliary vector defining additional constant parameters to be fed into each
node’s function.

Much like bias weights in a neural network, these parameters allow a slightly different computation to be per-
formed at different nodes that use the same primitive function.

decode(genome, *args, **kwargs)
Decode a genome containing both a CGP graph and a list of auxiliary parameters.

>>> primitives=[
... lambda x, y, z: sum([x, y, z]),
... lambda x, y, z: (x - y)*z,
... lambda x, y, z: (x*y)*z
...]
>>> decoder = CGPWithParametersDecoder(primitives, num_inputs=2, num_outputs=2,␣
→˓num_layers=2, nodes_per_layer=2, max_arity=2, num_parameters_per_node=1)
>>> genome = [[0, 0, 1, 1, 0, 1, 2, 2, 3, 0, 2, 3, 4, 5], [0.5, 15, 2.7, 0.
→˓0]]
>>> executable = decoder.decode(genome)
>>> executable
<leap_ec.executable_rep.cgp.CGPExecutable object at ...>

Now node #2 (i.e. the first computational node, skipping the two inputs #0 and #1) should have a parameter
value of 0.5, and so on:

>>> executable.graph.nodes[2]['parameters']
[0.5]
>>> executable.graph.nodes[3]['parameters']
[15]
>>> executable.graph.nodes[4]['parameters']
[2.7]
>>> executable.graph.nodes[5]['parameters']
[0.0]

initialize(parameters_initializer)
Return an initializer for creating the two-segment genomes that this decoder expects as input.

The first segment will be initialized with our standard CGP initializer. The second will use the provided
initializer.

class leap_ec.executable_rep.cgp.FunctionPrimitive(func, f_arity: int)
Bases: Primitive

160 Chapter 10. leap_ec package

LEAP: Library for Evolutionary Algorithms in Python Documentation, Release v0.9dev

A convenience wrapper that defines a generic primitive function for CGP from a function (ex. a lambda). Basi-
cally this lets us define a function that we can also query the arity of.

>>> f = FunctionPrimitive(lambda x, y: x ^ y, 2)
>>> f(True, False)
True
>>> f.arity
2

property arity

How many args are used inside the __call__ function

class leap_ec.executable_rep.cgp.NAND

Bases: Primitive

Primitive NAND function for use in genetic programming.

>>> f = NAND()
>>> f(True, True)
False
>>> f(True, False)
True

property arity

How many args are used inside the __call__ function

class leap_ec.executable_rep.cgp.NotX

Bases: Primitive

Primitive NOT function for use in genetic programming.

>>> f = NotX()
>>> f(True)
False
>>> f(False)
True

property arity

How many args are used inside the __call__ function

class leap_ec.executable_rep.cgp.Primitive

Bases: ABC

Abstract class that primitive functions inherit from for CGP.

You don’t need to use this class to define primitive for CGP. But if you do, it allows CGP to know the arity of
each function— which CGPDecoder can use to prune un-needed edges in the resulting graph. This sometimes
leads better performance or simpler graphs.

abstract property arity: int

How many args are used inside the __call__ function

leap_ec.executable_rep.cgp.cgp_art_primitives()

Returns a standard set of primitives that Ashmore and Miller originally published in an online report on “Evolu-
tionary Art with Cartesian Genetic Programming” (2004).

10.1. Subpackages 161

LEAP: Library for Evolutionary Algorithms in Python Documentation, Release v0.9dev

leap_ec.executable_rep.cgp.cgp_genome_mutate(cgp_decoder, expected_num_mutations: Optional[float]
= None, probability: Optional[float] = None)

leap_ec.executable_rep.cgp.cgp_mutate(cgp_decoder, expected_num_mutations: Optional[float] = None,
probability: Optional[float] = None)

A special integer-vector mutation operator that respects the constraints on valid genomes that are implied by the
parameters of the given CGPDecoder.

Parameters
• cgp_decoder – the Decoder, which informs us about the bounds genes should obey

• expected_num_mutations – on average how many mutations done (specificy either this
or probability, but not both)

• probability – the probability of mutating any given gene (specificy either this or ex-
pected_num_mutations, but not both)

leap_ec.executable_rep.cgp.create_cgp_vector(cgp_decoder)

leap_ec.executable_rep.executable module

This module provides executable object representations. An Executable in LEAP represents problem solutions as
functions, agent controllers, etc.

A LEAP Executable is a kind of phenotype, typically constructed when we use a Decoder to convert a genotypic
representation of the object into an executable phenotype.

Executable are also just callable functors, so you can use them in your code like any other function.

class leap_ec.executable_rep.executable.ArgmaxExecutable(wrapped_executable)
Bases: Executable

Wraps another Executable with logic that returns the index of the highest output.

For example, we can use this to convert the class selection distribution output by a softmax layer to an integer
representing the index of the most likely class:

>>> executable = lambda x: [x[0] ^ x[1], x[0] & x[1], x[0] + x[1]]
>>> wrapped = ArgmaxExecutable(executable)

>>> executable([1, 1])
[0, 1, 2]

>>> wrapped([1, 1])
2

class leap_ec.executable_rep.executable.Executable

Bases: ABC

class leap_ec.executable_rep.executable.KeyboardExecutable(input_space, output_space,
keymap=<function
KeyboardExecutable.<lambda>>)

Bases: Executable

A non-autonomous Executable phenotype that allows users to control an agent via the keyboard.

Parameters

162 Chapter 10. leap_ec package

LEAP: Library for Evolutionary Algorithms in Python Documentation, Release v0.9dev

• input_space – space of possible inputs (ignored)

• output_space – the space of possible actions to sample from, satisfying the Space interface
used by OpenAI Gym

• keymap – dict mapping keys to elements of the output space

key_press(key, mod)
You’ll need to assign this function to your environment’s key_press handler.

key_release(key, mod)
You’ll need to assign this function to your environment’s key_release handler.

class leap_ec.executable_rep.executable.RandomExecutable(input_space, output_space)
Bases: Executable

A trivial Executable phenotype that samples a random value from its output space.

Parameters
• input_space – space of possible inputs (ignored)

• output_space – the space of possible actions to sample from, satisfying the Space interface
used by OpenAI Gym

class leap_ec.executable_rep.executable.WrapperDecoder(wrapped_decoder, decorator)
Bases: Decoder

A decoder that takes an executable object output by the wrapped Decoder, and then wrapps that Executable with
an additional decorator function.

For example, if we have a Decoder that produces Executable objects whose output is governed by a softmax layer
(i.e. a distribution), we can use this class to decorate them with an ArgmaxExecutable to transform their output
into an integer.

decode(genome, *args, **kwargs)

Parameters
genome – a genome you wish to convert

Returns
the phenotype associated with that genome

leap_ec.executable_rep.neural_network module

Tools for decoding and executing a neural network from its genetic representation.

class leap_ec.executable_rep.neural_network.GraphPhenotypeProbe(modulo=1, ax=None, weights:
bool = False, weight_multiplier:
float = 1.0, context={'leap':
{'distrib': {'non_viable': 0},
'generation': 100}})

Bases: object

Visualize the graph for the best individual in the population.

This requires that the phenotypes of the individuals in the population have a graph attribute that provides a
networkx graph object.

10.1. Subpackages 163

LEAP: Library for Evolutionary Algorithms in Python Documentation, Release v0.9dev

class leap_ec.executable_rep.neural_network.SimpleNeuralNetworkDecoder(shape:
~typing.Tuple[int],
activation=<function
sigmoid>)

Bases: object

Decode a real-vector genome into a neural network by treating it as a test_sequence of weight matrices.

For example, say we have a linear real-valued made up of 29 values:

>>> genome = list(range(0, 29))

We can decode this into a neural network with 4 inputs, two hidden layers (of size 3 and 2), and 2 outputs like
so:

>>> from leap_ec.executable_rep import neural_network
>>> dec = neural_network.SimpleNeuralNetworkDecoder([4, 3, 2, 2])
>>> nn = dec.decode(genome)

Parameters
shape ((int)) – the size of each layer of the network, i.e. (inputs, hidden nodes, outputs). The
shape tuple must have at least two elements (inputs + bias weight and outputs): each additional
value is treated as a hidden layer. Note also that we expect a bias weight to exist for the inputs
of each layer, so the number of weights at each layer will be set to 1 greater than the number of
inputs you specify for that layer.

decode(genome, *args, **kwargs)
Decode a genome into a SimpleNeuralNetworkExecutable.

class leap_ec.executable_rep.neural_network.SimpleNeuralNetworkExecutable(weight_matrices,
activation)

Bases: Executable

A simple fixed-architecture neural network that can be executed on inputs.

Takes a list of weight matrices and an activation function as arguments. The weight matrices each must have 1
row more than the previous layer’s outputs, to support a bias node that is implicitly connected to each layer.

For example, here we build a network with 10 inputs, two hidden layers (with 5 and 3 nodes, respectively), and
5 output nodes, and random weights:

>>> import numpy as np
>>> from leap_ec.executable_rep import neural_network
>>> n_inputs = 10
>>> n_hidden1, n_hidden2 = 5, 3
>>> n_outputs = 5
>>> weights = [np.random.uniform((n_inputs + 1, n_hidden1)),
... np.random.uniform((n_hidden1 + 1, n_hidden2)),
... np.random.uniform((n_hidden2 + 1, n_outputs))]
>>> nn = neural_network.SimpleNeuralNetworkExecutable(weights, neural_network.
→˓sigmoid)

property graph

Create a graph representation of this neural network (ex., for visualization).

164 Chapter 10. leap_ec package

LEAP: Library for Evolutionary Algorithms in Python Documentation, Release v0.9dev

property num_hidden_layers

The number of hidden layers in this network.

property num_inputs

The number of inputs the network receives.

property num_outputs

The number of outputs the network produces.

leap_ec.executable_rep.neural_network.relu(x)
A rectified linear unit (ReLu) activation function. Accept array-like inputs, and uses NumPy for efficient com-
putation.

leap_ec.executable_rep.neural_network.sigmoid(x)
A logistic sigmoid activation function. Accepts array-like inputs, and uses NumPy for efficient computation.

leap_ec.executable_rep.neural_network.softmax(x)
A softmax activation function. Accepts array-like input and normalizes each element relative to the others.

leap_ec.executable_rep.problems module

class leap_ec.executable_rep.problems.EnvironmentProblem(runs: int, steps: int, environment,
fitness_type: str, gui: bool,
stop_on_done=True, maximize=True)

Bases: ScalarProblem

Defines a fitness function over Executable by evaluating them within a given environment.

Parameters
• runs (int) – The number of independent runs to aggregate data over.

• steps (int) – The number of steps to run the simulation for within each run.

• environment – A simulation environment corresponding to the OpenAI Gym environment
interface.

• behavior_fitness – A function

evaluate(phenome)
Run the environmental simulation using executable phenotype as a controller, and use the resulting obser-
vations & rewards to compute a fitness value.

property num_inputs

Return the number of dimensions in the environment’s input space.

property num_outputs

Return the number of dimensions in the environment’s action space.

static space_dimensions(observation_space)→ int
Helper to get the number of dimensions (variables) in an OpenAI Gym space.

The point of this helper is that it works on simple spaces:

>>> from gymnasium import spaces
>>> discrete = spaces.Discrete(8)
>>> EnvironmentProblem.space_dimensions(discrete)
1

10.1. Subpackages 165

LEAP: Library for Evolutionary Algorithms in Python Documentation, Release v0.9dev

Box spaces:

>>> box = spaces.Box(low=-1.0, high=2.0, shape=(3, 4), dtype=np.float32)
>>> EnvironmentProblem.space_dimensions(box)
12

And Tuple spaces:

>>> tup = spaces.Tuple([discrete, box])
>>> EnvironmentProblem.space_dimensions(tup)
13

class leap_ec.executable_rep.problems.ImageXYProblem(path, maximize=False)
Bases: ScalarProblem

A problem that takes a function that generates an image defined over (x, y) coordinates and computed its fitness
based on its match to an externally-defined image.

evaluate(phenome)
Evaluate the given phenome.

Practitioners must over-ride this member function.

Note that by default the individual comparison operators assume a maximization problem; if this is a min-
imization problem, then just negate the value when returning the fitness.

Parameters
phenome – the phenome to evaluate (this will not be modified)

Returns
the fitness value

static generate_image(executable, width, height)

class leap_ec.executable_rep.problems.TruthTableProblem(boolean_function, num_inputs,
num_outputs, name: Optional[str] = None,
pad_inputs=False, maximize=True)

Bases: ScalarProblem

Defines a fitness function over a Executable by evaluating it against each row of a given Boolean function’s
truth table.

Both the executable we receive and the boolean_function we compare against should return a list of 1 or more
outputs.

evaluate(phenome)
Say our object function is (x0 ∧ 𝑥1) ∨ 𝑥3:

>>> problem = TruthTableProblem(lambda x: [(x[0] and x[1]) or x[2]], num_
→˓inputs=3, num_outputs=1)

The truth table for this Boolean function has eight entries:

F F F=F F F T=T F T F=F F T T=T T F F=F T F T=T T T F=T T T T=T

Now consider a different function, (x0 ∧ 𝑥1)⊕ 𝑥3.

>>> executable = lambda x: [(x[0] and x[1]) ^ x[2]]

166 Chapter 10. leap_ec package

LEAP: Library for Evolutionary Algorithms in Python Documentation, Release v0.9dev

This function’s truth table differs from the first one by exactly one entry (in the second one, TTT=F). So
we expect a fitness value of $7/8 = 0.875$:

>>> from leap_ec import Individual
>>> problem.evaluate(executable)
0.875

Note that we our lambda functions above return a list that contains a computed value, rather than just the
value directly. This is because this framework allows us to work with functions of more than one output:

>>> problem = TruthTableProblem(lambda x: [x[0] and x[1], x[0] or x[1]], num_
→˓inputs=3, num_outputs=2)
>>> problem.evaluate(lambda x: [x[0] and x[1], x[0] or x[1]])
1.0

leap_ec.executable_rep.rules module

Pitt-approach rule systems are one of the two basic approach to evolving rule-based programs (alongside Michigan-
approach systems). In Pitt systems, every individual encodes a complete set of rules for producing an output given a
set of inputs.

Evolutionary rule systems (also known as learning classifier systems) are often used to create controller for agents (i.e.
for reinforcement learning problems), or to evolve classifiers for pattern recognition (i.e. supervised learning).

This module provides a basic Pitt-approach system that uses the spaces API from OpenAI Gym to define input and
output spaces for rule conditions and actions, respectively.

class leap_ec.executable_rep.rules.PittRulesDecoder(input_space, output_space,
memory_space=None, priority_metric=None)

Bases: Decoder

A Decoder that contructs a Pitt-approach rule system phenotype (PittRulesExecutable) out of a real-valued
genome.

We use the OpenAI Gym spaces API to define the types and dimensionality of the rule system’s inputs and
outputs.

Parameters
• input_space – an OpenAI-gym-style space defining the inputs

• output_space – an OpenAI-gym-style space defining the outputs

• priority_metric – a PittRulesExecutable.PriorityMetric enum value defining how match-
ing rules are deconflicted within the controller

• num_memory_registers – the number of stateful memory registers that each rule considers
as additional inputs

If, for example, we want to evolve controllers for a robot that has 3 real-valued sensor inputs and 4 mutually
exclusive actions to choose from, we might use a Box and Discrete space, respectively, from gym.spaces:

>>> from gymnasium import spaces
>>> in_ = spaces.Box(low=0, high=1.0, shape=(1, 3), dtype=np.float32)
>>> out_ = spaces.Discrete(4)
>>> decoder = PittRulesDecoder(input_space=in_, output_space=out_)

10.1. Subpackages 167

LEAP: Library for Evolutionary Algorithms in Python Documentation, Release v0.9dev

property action_bounds

The bounds of permitted values on action genes within each rule.

For example, the following decoder

>>> from gymnasium import spaces
>>> in_ = spaces.Box(low=0, high=1.5, shape=(1, 3), dtype=np.float32)
>>> out_ = spaces.Discrete(4)
>>> decoder = PittRulesDecoder(input_space=in_, output_space=out_)

allows just one output value gene in each rule, with a maximum value of 4.

Bounds are inclusive, so they look like this:

>>> decoder.action_bounds
[(0, 3)]

bounds(num_rules)
Return the (low, high) bounds that it makes sense for each gene to vary within.

>>> from gymnasium import spaces
>>> in_ = spaces.Box(low=0, high=1.0, shape=(1, 3), dtype=np.float32)
>>> out_ = spaces.Discrete(4)
>>> decoder = PittRulesDecoder(input_space=in_, output_space=out_)
>>> decoder.bounds(num_rules=4)
[[(0.0, 1.0), (0.0, 1.0), (0.0, 1.0), (0.0, 1.0), (0.0, 1.0), (0.0, 1.0), (0,␣
→˓3)], [(0.0, 1.0), (0.0, 1.0), (0.0, 1.0), (0.0, 1.0), (0.0, 1.0), (0.0, 1.0),␣
→˓(0, 3)], [(0.0, 1.0), (0.0, 1.0), (0.0, 1.0), (0.0, 1.0), (0.0, 1.0), (0.0, 1.
→˓0), (0, 3)], [(0.0, 1.0), (0.0, 1.0), (0.0, 1.0), (0.0, 1.0), (0.0, 1.0), (0.
→˓0, 1.0), (0, 3)]]

property condition_bounds

The bounds of permitted values on condition genes within each rule.

For example, the following decoder

>>> from gymnasium import spaces
>>> in_ = spaces.Box(low=0, high=1.5, shape=(1, 3), dtype=np.float32)
>>> out_ = spaces.Discrete(4)
>>> decoder = PittRulesDecoder(input_space=in_, output_space=out_)

produces bounds that restrict the low and high value of each condition’s range between 0 and 1.5:

>>> decoder.condition_bounds
[(0.0, 1.5), (0.0, 1.5), (0.0, 1.5), (0.0, 1.5), (0.0, 1.5), (0.0, 1.5)]

decode(genome, *args, **kwargs)
Decodes a real-valued genome into a PittRulesExecutable.

For example, say we have a Decoder that takes continuous inputs from a 2-D box and selects between two
discrete actions:

>>> import numpy as np
>>> from gymnasium import spaces
>>> in_ = spaces.Box(low=np.array((0, 0)), high=np.array((1.0, 1.0)), dtype=np.

(continues on next page)

168 Chapter 10. leap_ec package

LEAP: Library for Evolutionary Algorithms in Python Documentation, Release v0.9dev

(continued from previous page)

→˓float32)
>>> out_ = spaces.Discrete(2)
>>> decoder = PittRulesDecoder(input_space=in_, output_space=out_)

Now we can take genomes that represent each rule as as segment of the form [low, high, low, high, action]
and converts them into executable controllers:

>>> genome = [[0.0,0.6, 0.0,0.4, 0],
... [0.4,1.0, 0.6,1.0, 1]]
>>> decoder.decode(genome)
<leap_ec.executable_rep.rules.PittRulesExecutable object at ...>

genome_to_rules(genome)
Convert a genome into a list of Rules.

Usage example:

>>> import numpy as np
>>> from gymnasium import spaces
>>> in_ = spaces.Box(low=np.array((0, 0)), high=np.array((1.0, 1.0)), dtype=np.
→˓float32)
>>> out_ = spaces.Discrete(2)
>>> decoder = PittRulesDecoder(input_space=in_, output_space=out_)

Now we can take genomes that represent each rule as as segment of the form [low, high, low, high, action]
and converts them into Rule objects:

>>> genome = [[0.0,0.6, 0.0,0.4, 0],
... [0.4,1.0, 0.6,1.0, 1]]
>>> decoder.genome_to_rules(genome)
[Rule(conditions=[(0.0, 0.6), (0.0, 0.4)], actions=[0]), Rule(conditions=[(0.4,␣
→˓1.0), (0.6, 1.0)], actions=[1])]

initializer(num_rules: int)
Returns an initializer function that can generate genomes according to the segmented scheme that we use
for rule sets—i.e. with the appropriate number of segments, inputs, outputs, and hidden registers.

For instance, if we have the following decoder:

>>> from gymnasium import spaces
>>> in_ = spaces.Box(low=0, high=1.0, shape=(1, 3), dtype=np.float32)
>>> out_ = spaces.Discrete(4)
>>> decoder = PittRulesDecoder(input_space=in_, output_space=out_)

Then we can get an initializer like so that creates genomes compatible with the decoder when called:

>>> initialize = decoder.initializer(num_rules=4)
>>> initialize()
[array(...), array(...), array(...), array(...)]

Notice that it creates four top-level segments (one for each rule), and that the condition bounds for each
input within a rule are wrapped in tuple sub-segments.

10.1. Subpackages 169

LEAP: Library for Evolutionary Algorithms in Python Documentation, Release v0.9dev

mutator(condition_mutator, action_mutator)
Returns a mutation operator that properly handles the segmented genome representation used for rule sets.

This wraps two different mutation operators you provide, so that mutation can be configured differently for
rule conditions and rule actions, respectively.

Parameters
• condition_mutator – a mutation operator to use for the condition genes in each rule.

• action_mutator – a mutation operator to use for the action genes in each rule.

For example, often we’ll apply a rule system to a real-valued observation space and an integer-valued action
space.

>>> from gymnasium import spaces
>>> in_ = spaces.Box(low=0, high=1.0, shape=(1, 3), dtype=np.float32)
>>> out_ = spaces.Discrete(4)
>>> decoder = PittRulesDecoder(input_space=in_, output_space=out_)

These two spaces call for different mutation strategies:

>>> from leap_ec.real_rep.ops import genome_mutate_gaussian
>>> from leap_ec.int_rep.ops import individual_mutate_randint
>>> mutator = decoder.mutator(
... condition_mutator=genome_mutate_gaussian,
... action_mutator=individual_mutate_randint
...)

property num_genes_per_rule

This property reports the total number of genes that specify each rule.

For example, the following decoder

>>> from gymnasium import spaces
>>> in_ = spaces.Box(low=0, high=1.0, shape=(1, 3), dtype=np.float32)
>>> out_ = spaces.Discrete(4)
>>> decoder = PittRulesDecoder(input_space=in_, output_space=out_)

takes rule genomes that have 7 values in each segment: 6 to specify the condition ranges ((low, high) for
each of 3 inputs), and 1 to specify the output action.

>>> decoder.num_genes_per_rule
7

property num_inputs

This property reports the number of dimensions in the system’s input space.

For example, the following decoder

>>> from gymnasium import spaces
>>> in_ = spaces.Box(low=0, high=1.0, shape=(1, 12), dtype=np.float32)
>>> out_ = spaces.Discrete(4)
>>> decoder = PittRulesDecoder(input_space=in_, output_space=out_)

has a 12-dimensional input space:

170 Chapter 10. leap_ec package

LEAP: Library for Evolutionary Algorithms in Python Documentation, Release v0.9dev

>>> decoder.num_inputs
12

property num_memory_registers

property num_outputs

This property reports the number of dimensions in the system’s output space.

For example, the following decoder

>>> from gymnasium import spaces
>>> in_ = spaces.Box(low=0, high=1.0, shape=(1, 12), dtype=np.float32)
>>> out_ = spaces.Discrete(4)
>>> decoder = PittRulesDecoder(input_space=in_, output_space=out_)

has a 1-dimensional output space:

>>> decoder.num_outputs
1

class leap_ec.executable_rep.rules.PittRulesExecutable(input_space, output_space, rules,
priority_metric, init_mem=[])

Bases: Executable

An Executable phenotype that interprets a Pittsburgh-style ruleset and outputs the appropriate action.

Parameters
• input_space – an OpenAI-gym-style space defining the inputs

• output_space – an OpenAI-gym-style space defining the outputs

• init_memory – a list of initial values for the memory registers

• rules – a list of Rule objects

• priority_metric – the rule prioritization strategy used to resolve conflicts

Rulesets are lists of rules. Rules are lists of the form [c1 c1’ c2 c2’ . . . cn cn’ a1 . . . am m1 . . . mr], where
(cx, cx’) are are the min and max bounds that the rule covers, a1 .. am are the output actions, and m1 . . . mr are
values to write to the memory registers.

For example, this ruleset has two rules. The first rule covers the square bounded by (0.0, 0.6)’ and `(0.0, 0.4),
returning the output action 0 if the input falls within that range:

>>> rules = [Rule(conditions=[(0.0, 0.6), (0.0, 0.4)], actions=[0]),
... Rule(conditions=[(0.4, 1.0), (0.6, 1.0)], actions=[1])
...]

The input and output spaces are defined in the style of OpenAI gym. For example, here’s how you would set up
a PittRulesExecutable with the above ruleset that takes two continuous input variables on (0.0, 1.0), and outputs
discrete values in {0, 1}:

>>> import numpy as np
>>> from gymnasium import spaces
>>> input_space = spaces.Box(low=np.array((0, 0)), high=np.array((1.0, 1.0)),␣
→˓dtype=np.float32)
>>> output_space = spaces.Discrete(2)

(continues on next page)

10.1. Subpackages 171

LEAP: Library for Evolutionary Algorithms in Python Documentation, Release v0.9dev

(continued from previous page)

>>> rules = PittRulesExecutable(input_space, output_space, rules,
... priority_metric=PittRulesExecutable.PriorityMetric.
→˓RULE_ORDER)

class PriorityMetric(value)
Bases: Enum

An enumeration.

GENERALITY = 2

PERIMETER = 3

RULE_ORDER = 1

class leap_ec.executable_rep.rules.PlotPittRuleProbe(decoder, plot_dimensions: (<class 'int'>,
<class 'int'>) = (0, 1), ax=None, xlim=(0, 1),
ylim=(0, 1), modulo=1, context={'leap':
{'distrib': {'non_viable': 0}, 'generation':
100}})

Bases: object

A visualization operator that takes the best individual in the population and plots the condition bounds for each
rule, i.e. as boxes over the input space.

Parameters
• num_inputs (int) – the number of inputs in the sensor space

• num_outputs (int) – the number of output actions

• plot_dimensions ((int, int)) – which two dimensions of the input space to visualize
along the x and y axes; defaults to the first two dimensions, (0, 1)

• ax – the matplotlib axis to plot to; if None (the default), new Axes are created

• xlim ((float, float)) – bounds for the horizontal axis

• ylim ((float, float)) – bounds for the vertical axis

• modulo (int) – the interval (in generations) to go between each visualization; i.e. if set to
10, then the visualization will be updated every 10 generations

• context – the context objected that the generation count is read from (should be updated by
the algorithm at each generation)

This probe requires a decoder, which it uses to parse individual genomes into sets of rules that it can visualize:

>>> import numpy as np
>>> from gymnasium import spaces
>>> in_ = spaces.Box(low=np.array((0, 0)), high=np.array((1.0, 1.0)), dtype=np.
→˓float32)
>>> out_ = spaces.Discrete(2)
>>> decoder = PittRulesDecoder(input_space=in_, output_space=out_)

Now we can create the probe itself:

>>> probe = PlotPittRuleProbe(decoder)

172 Chapter 10. leap_ec package

LEAP: Library for Evolutionary Algorithms in Python Documentation, Release v0.9dev

If we feed it a population of a single individual, we’ll see all that individual’s rules visualized. Like all LEAP
probes, it returns the population unmodified. This allows the probe to be inserted into an EA’s operator pipeline.

>>> from leap_ec.individual import Individual
>>> ruleset = np.array([[0.0, 0.6, 0.0, 0.5, 0],
... [0.4, 1.0, 0.3, 1.0, 1],
... [0.1, 0.2, 0.1, 0.2, 0],
... [0.5, 0.6, 0.8, 1.0, 1]])
>>> pop = [Individual(genome=ruleset)]
>>> probe(pop)
[Individual<...>(...)]

class leap_ec.executable_rep.rules.Rule(conditions, actions)
Bases: tuple

property actions

Alias for field number 1

property conditions

Alias for field number 0

Module contents

10.1.5 leap_ec.int_rep package

Submodules

leap_ec.int_rep.initializers module

Initializers for integer-valued genomes.

leap_ec.int_rep.initializers.create_int_vector(bounds)
A closure for initializing lists of integers for int-vector genomes, sampled from a uniform distribution.

Having a closure allows us to just call the returned function N times in Individual.create_population().

TODO Allow either a single tuple or a sequence of tuples for bounds. —Siggy

Parameters
bounds – a list of (min, max) values bounding the uniform sampline of each element

Returns
A function that, when called, generates a random genome.

>>> from leap_ec.decoder import IdentityDecoder
>>> from leap_ec.real_rep.problems import SpheroidProblem
>>> bounds = [(0, 1), (-5, 5), (-1, 100)]
>>> population = Individual.create_population(10, create_int_vector(bounds),
... decoder=IdentityDecoder(),
... problem=SpheroidProblem())

10.1. Subpackages 173

LEAP: Library for Evolutionary Algorithms in Python Documentation, Release v0.9dev

leap_ec.int_rep.ops module

Evolutionary operators for maniuplating integer-vector genomes.

leap_ec.int_rep.ops.genome_mutate_binomial(std='__no__default__', bounds: list = '__no__default__',
expected_num_mutations: float = None, probability: float =
None, n: int = 10000)

Perform additive binomial mutation of a particular genome.

>>> import numpy as np
>>> genome = np.array([42, 12])
>>> bounds = [(0,50), (-10,20)]
>>> genome_op = genome_mutate_binomial(std=0.5, bounds=bounds,
... expected_num_mutations=1)
>>> new_genome = genome_op(genome)

leap_ec.int_rep.ops.individual_mutate_randint(genome='__no__default__', bounds: list =
'__no__default__', expected_num_mutations=None,
probability=None)

Perform random-integer mutation on a particular genome.

>>> import numpy as np
>>> genome = np.array([42, 12])
>>> bounds = [(0,50), (-10,20)]
>>> new_genome = individual_mutate_randint(genome, bounds, expected_num_mutations=1)

Parameters
• genome – test_sequence of integers to be mutated

• bounds – test_sequence of bounds tuples; e.g., [(1,2),(3,4)]

• expected_num_mutations – on average how many mutations done (specificy either this
or probability, but not both)

• probability – the probability of mutating any given gene (specificy either this or ex-
pected_num_mutations, but not both)

leap_ec.int_rep.ops.mutate_binomial(next_individual: Iterator = '__no__default__', std: float =
'__no__default__', bounds: list = '__no__default__',
expected_num_mutations: float = None, probability: float = None, n:
int = 10000)→ Iterator

Mutate genes by adding an integer offset sampled from a binomial distribution centered on the current gene value.

This is very similar to applying additive Gaussian mutation and then rounding to the nearest integer, but does so
in a way that is more natural for integer-valued genes.

Parameters
• std (float) – standard deviation of the binomial distribution

• bounds – list of pairs of hard bounds to clip each gene by (to prevent mutation from carrying
a gene value outside an allowed range)

• expected_num_mutations – on average how many mutations done (specificy either this
or probability, but not both)

174 Chapter 10. leap_ec package

LEAP: Library for Evolutionary Algorithms in Python Documentation, Release v0.9dev

• probability – the probability of mutating any given gene (specificy either this or ex-
pected_num_mutations, but not both)

• n (int) – the number of “coin flips” to use in the binomial process (defaults to 10000)

Usage example:

>>> from leap_ec.individual import Individual
>>> from leap_ec.int_rep.ops import mutate_binomial
>>> import numpy as np
>>> population = iter([Individual(np.array([1, 1]))])
>>> operator = mutate_binomial(std=2.5,
... bounds=[(0, 10), (0, 10)],
... expected_num_mutations=1)
>>> mutated = next(operator(population))

The std parameter can also be given as a list with a value to use for each gene locus:

>>> population = iter([Individual(np.array([1, 1]))])
>>> operator = mutate_binomial(std=[2.5, 3.0],
... bounds=[(0, 10), (0, 10)],
... expected_num_mutations=1)
>>> mutated = next(operator(population))

Note: The binomial distribution is defined by two parameters, n and p. Here we simplify the interface by asking
instead for an std parameter, and fixing a high value of n by default. The value of p needed to obtain the given
std is computed for you internally.

As the plots below illustrate, the binomial distribution is approximated by a Gaussian. For high n and large
standard deviations, the two are effectively equivalent. But when the standard deviation (and thus binomial p
parameter) is relatively small, the approximation becomes less accurate, and the binomial differs somewhat from
a Gaussian.

10.1. Subpackages 175

LEAP: Library for Evolutionary Algorithms in Python Documentation, Release v0.9dev

10 5 0 5 10

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35 Binomial(n=15)
Binomial(n=10000)
Gaussian

leap_ec.int_rep.ops.mutate_randint(next_individual: Iterator = '__no__default__',
bounds='__no__default__', expected_num_mutations=None,
probability=None)→ Iterator

Perform randint mutation on each individual in an iterator (population).

This operator replaces randomly selected genes with an integer samples from a uniform distribution.

Parameters
• bounds – test_sequence of bounds tuples; e.g., [(1,2),(3,4)]

• expected_num_mutations – on average how many mutations done (specificy either this
or probability, but not both)

• probability – the probability of mutating any given gene (specificy either this or ex-
pected_num_mutations, but not both)

>>> from leap_ec.individual import Individual
>>> from leap_ec.int_rep.ops import mutate_randint
>>> import numpy as np

>>> population = iter([Individual(np.array([1, 1]))])
>>> operator = mutate_randint(expected_num_mutations=1, bounds=[(0, 10), (0, 10)])
>>> mutated = next(operator(population))

176 Chapter 10. leap_ec package

LEAP: Library for Evolutionary Algorithms in Python Documentation, Release v0.9dev

Module contents

10.1.6 leap_ec.landscape_features package

Submodules

leap_ec.landscape_features.exploratory module

This module implements features that are common in exploratory landscape analysis (ELA).

The gist of exploratory landscape analysis is that it provides a set of

1. statistical features for measuring properties of continuous fitness landscapes, with

2. an emphasis on using a small number of fitness samples to compute the features.

The big idea is that these are features you can use to measure and understand a problem before solving it.

There are dozens of traditional ELA features. Most are described in the following two seminal papers:

• Mersmann, Olaf, et al. “Exploratory landscape analysis.” Proceedings of the 13th annual conference on Genetic
and evolutionary computation. 2011.

• Kerschke, Pascal, et al. “Cell mapping techniques for exploratory landscape analysis.” EVOLVE-A Bridge be-
tween Probability, Set Oriented Numerics, and Evolutionary Computation V. Springer, Cham, 2014. 115-131.

class leap_ec.landscape_features.exploratory.ELAConvexity(problem, representation,
design_individuals: list,
num_convexity_tests: int = 1000)

Bases: object

This class provides features that empirically estimate the degree to which a landscape is convex or linear.

Parameters
• problem – the fitness landscape to analyze (must accept real-vector phenomes).

• representation – a Representation that can be used to sample and decode new indi-
viduals (must decode individuals into a real-vector phenome).

• design_individuals – an initial sample individuals that is used as the basis for analysis
(their fitnesses must already have been evaluated).

• num_convexity_tests (int) – the number of pairwises tests (and additional fitness sam-
ples) to use in estimating convexity features.

The algorithm used here is best explained by the following graphic:

We take a number of random pairs 𝑥, 𝑦 of individuals from the initial design (sample), and compute a third point
𝑝 from them via a convex combination of the original two points (i.e. a random point lying along the line between
the original points). Then we compare the fitness 𝑓(𝑝) of the new point to the fitness that the point would have
if the landscape were perfectly linear between the original points. That is, we compute the difference between
the complex combination of the parents’ fitness values 𝑓(𝑥) and 𝑓(𝑦) and the fitness value of their genomes’
complex combination, 𝑓(𝑝).

𝛿 = 𝑓(𝑝)− comb(𝑓(𝑥), 𝑓(𝑦))

When 𝛿 ≈ 0, it suggests local linearity of the fitness landscape, whereas when 𝛿 < 0, convexity is suggested.

To compute these features, we’ll need a problem and a representation:

10.1. Subpackages 177

https://dl.acm.org/doi/abs/10.1145/2001576.2001690
https://link.springer.com/chapter/10.1007/978-3-319-07494-8_9
https://en.wikipedia.org/wiki/Convex_combination

LEAP: Library for Evolutionary Algorithms in Python Documentation, Release v0.9dev

Genotype

Fit
ne

ss

x

y

comb(x, y)

p

Suggested
convex surface

Convexity Sample Illustration

178 Chapter 10. leap_ec package

LEAP: Library for Evolutionary Algorithms in Python Documentation, Release v0.9dev

>>> from leap_ec.decoder import IdentityDecoder
>>> from leap_ec.individual import Individual
>>> from leap_ec.representation import Representation
>>> from leap_ec.real_rep import initializers, problems

>>> DIMENSIONS = 10
>>> N_SAMPLES = 50*DIMENSIONS
>>> problem = problems.SpheroidProblem()

>>> representation = Representation(
... initialize=initializers.create_real_vector(bounds=[(-5.12, 5.
→˓12)]*DIMENSIONS)
...)

We’ll also need an initial sample of individuals must be provided, with its fitnesses already evaluated:

>>> initial_sample = representation.create_population(N_SAMPLES, problem)
>>> initial_sample = Individual.evaluate_population(initial_sample);

The feature computation uses this as its initial “experiment design,” and then takes additional fitness samples as
needed when we call the constructor:

>>> convex = ELAConvexity(problem, representation, design_individuals=initial_
→˓sample)

The resulting object can be used to compute the various feature calculations:

>>> x = convex.convex_p()

>>> x = convex.linear_p()

>>> x = convex.linear_deviation()

property combinations

Contains the list of (f, p) pairs, where f is the convex combination of the fitness pair that was used in the
ith test, and p is the individual formed from the convex combination of their genomes.

convex_p(threshold: float = -1e-10)
Estimate the probability that the landscape is convex by calculating the frequency with which

𝛿 < 𝜏

where 𝜏 is a small negative threshold (typically −10−10).

Parameters
threshold (float) – the value of 𝜏 .

property deltas

Contains the list of 𝛿 = 𝑓(𝑝)− comb(𝑓(𝑥), 𝑓(𝑦)) values that were computed for the convexity tests.

linear_deviation()

Estimate the deviation of the landscape from linearity by averaging the 𝛿 values.

10.1. Subpackages 179

LEAP: Library for Evolutionary Algorithms in Python Documentation, Release v0.9dev

linear_deviation_abs()

Estimate the deviation of the landscape of linearity by averagin the absolute value |𝛿| of the computed
deltas.

Sometimes this is simply the negative of linear_deviation() (ex. when the function is completely convex),
but other times the two values differ considerably.

linear_p(threshold: float = -1e-10)
Estimate the probability that the landscape is linear by calculating the frequency with which

|𝛿| < 𝜏

where 𝜏 is a small negative threshold (typically −10−10).

Parameters
threshold (float) – the value of 𝜏 .

property pairs

Contains all of the pairs of original individuals that were used in the convexity tests.

results_table(function_name=None)
Return a Pandas dataframe as a convenience, with one row for each computed feature.

Module contents

This package contains algorithms for computing statistical properties of landscapes.

Much of the research on landscape features is focused on understanding why some problems are easy or hard to solve
for certain algorithms, or on how we might use statistical features to train machine learning models to assist in algorithm
selection.

For a good survey of the field, look to the following paper:

• Malan, Katherine Mary. “A Survey of Advances in Landscape Analysis for Optimisation.” Algorithms 14.2
(2021): 40.

10.1.7 leap_ec.multiobjective package

Submodules

leap_ec.multiobjective.asynchronous module

class leap_ec.multiobjective.asynchronous.ENLUInserter

Bases: object

leap_ec.multiobjective.asynchronous.enlu_inds_rank(start_point, layer_pops)
Performs the incremental non-dominated sorting ranking process.

Based on the ENLU insertion algorithm with the modification of a binary search for the start point. Locates the
highest layer where the individual is nondominated and inserts it, propagating layer composition changes down
the rankings.

• K. Li, K. Deb, Q. Zhang and Q. Zhang, “Efficient Nondomination Level Update Method for Steady-State
Evolutionary Multiobjective Optimization,” in IEEE Transactions on Cybernetics, vol. 47, no. 9, pp. 2838-
2849, Sept. 2017, doi: 10.1109/TCYB.2016.2621008.

Parameters

180 Chapter 10. leap_ec package

https://www.mdpi.com/1999-4893/14/2/40

LEAP: Library for Evolutionary Algorithms in Python Documentation, Release v0.9dev

• points (moving) – the set of points descending in rank from the previous layer. In the first
recursion this is the inserted individual.

• layer_pops – the population separated into non-dominating layers.

• rank_func – the ranking function used to separate out the dominated group at each recur-
sion.

• depth – the current layer depth the moving points set is dominating.

leap_ec.multiobjective.asynchronous.steady_state_nsga_2(client, max_births: int, init_pop_size: int,
pop_size: int, problem:
MultiObjectiveProblem, representation,
offspring_pipeline, count_nonviable=False,
evaluated_probe=None, pop_probe=None,
context={'leap': {'distrib': {'non_viable':
0}, 'generation': 100}})

A steady state version of the NSGA-II multi-objective evolutionary algorithm.
Functionally, a wrapper around steady_state that chooses the inserter for you.

• K. Li, K. Deb, Q. Zhang and Q. Zhang, “Efficient Nondomination Level Update Method for Steady-
State Evolutionary Multiobjective Optimization,” in IEEE Transactions on Cybernetics, vol. 47, no.
9, pp. 2838-2849, Sept. 2017, doi: 10.1109/TCYB.2016.2621008.

Parameters
• client – Dask client that should already be set-up

• max_births – how many births are we allowing?

• init_pop_size – size of initial population sent directly to workers at start

• pop_size – how large should the population be?

• representation – of the individuals

• problem – to be solved

• offspring_pipeline – for creating new offspring from the pop

• count_nonviable – True if we want to count non-viable individuals towards the birth bud-
get

• evaluated_probe – is a function taking an individual that is given the next evaluated indi-
vidual; can be used to print newly evaluated individuals

• pop_probe – is an optional function that writes a snapshot of the population to a CSV for-
matted stream ever N births

Returns
the population containing the final individuals

10.1. Subpackages 181

LEAP: Library for Evolutionary Algorithms in Python Documentation, Release v0.9dev

leap_ec.multiobjective.nsga2 module

Implementation of Non-dominated sorted genetic algorithm II (NSGA-II).

• Deb, Kalyanmoy, Amrit Pratap, Sameer Agarwal, and T. A. M. T. Meyarivan. “A Fast and Elitist Multiobjective
Genetic Algorithm: NSGA-II.” IEEE transactions on evolutionary computation 6, no. 2 (2002): 182-197.

leap_ec.multiobjective.nsga2.generalized_nsga_2(max_generations: int, pop_size: int, problem:
~leap_ec.multiobjective.problems.MultiObjectiveProblem,
representation, pipeline, rank_func=<function
rank_ordinal_sort>, stop=<function <lambda>>,
init_evaluate=<bound method
Individual.evaluate_population of <class
'leap_ec.individual.Individual'>>, start_generation:
int = 0, context={'leap': {'distrib': {'non_viable': 0},
'generation': 100}})

NSGA-II multi-objective evolutionary algorithm.

• Deb, Kalyanmoy, Amrit Pratap, Sameer Agarwal, and T. A. M. T. Meyarivan.
“A Fast and Elitist Multiobjective Genetic Algorithm: NSGA-II.” IEEE transactions on evolutionary
computation 6, no. 2 (2002): 182-197.

• Bogdan Burlacu. 2022. Rank-based Non-dominated Sorting. arXiv.
DOI:https://doi.org/10.48550/ARXIV.2203.13654

This classic algorithm relies on the idea of “non-dominated sorting” and de-crowding to evolve a diverse Pareto
front. The “generalized” NSGA-II we implement here differs slightly from the canonical algorithm, in that we
default to a faster sorting algorithm devised by Burlacu (2022).

If you wish the algorithm to use the original NSGA-II behavior instead (which runs much slower), you can select
the original operator by passing in rank_func=fast_nondominated_sort.

>>> from leap_ec.representation import Representation
>>> from leap_ec.ops import random_selection, clone, evaluate, pool
>>> from leap_ec.real_rep.initializers import create_real_vector
>>> from leap_ec.real_rep.ops import mutate_gaussian
>>> from leap_ec.multiobjective.nsga2 import generalized_nsga_2
>>> from leap_ec.multiobjective.problems import SCHProblem
>>> pop_size = 10
>>> max_generations = 5
>>> final_pop = generalized_nsga_2(
... max_generations=max_generations, pop_size=pop_size,
...
... problem=SCHProblem(),
...
... representation=Representation(
... initialize=create_real_vector(bounds=[(-10, 10)])
...),
...
... pipeline=[
... random_selection,
... clone,
... mutate_gaussian(std=0.5, expected_num_mutations=1),
... evaluate,
... pool(size=pop_size),

(continues on next page)

182 Chapter 10. leap_ec package

LEAP: Library for Evolutionary Algorithms in Python Documentation, Release v0.9dev

(continued from previous page)

...]

...)

[Individual(. . .), Individual(. . .), Individual(. . .), . . . Individual(. . .)]

Note
You will need a selection as first operator in pipeline. This will use Deb’s multiobjective criteria
for comparing individuals as dictated in MultiobjectiveProblem.

Parameters
• max_generations (int) – The max number of generations to run the algorithm for. Can

pass in float(‘Inf’) to run forever or until the stop condition is reached.

• pop_size (int) – Size of the initial population

• rank_func – the function used to calculate non-domination rankings for the individuals of
the population.

• stop (int) – A function that accepts a population and returns True iff it’s time to stop evolv-
ing.

• problem (Problem) – the Problem that should be used to evaluate individuals’ fitness

• representation – How the problem is represented in individuals

• pipeline (list) – a list of operators that are applied (in order) to create the offspring
population at each generation

• init_evaluate – a function used to evaluate the initial population, before the main pipeline
is run. The default of Individual.evaluate_population is suitable for many cases, but you may
wish to pass a different operator in for distributed evaluation or other purposes.

• start_generation – index of the first generation to count from (defaults to 0). You might
want to change this, for example, in experiments that involve stopping and restarting an al-
gorithm.

Returns
a list of the final population

leap_ec.multiobjective.ops module

LEAP pipeline operators for multiobjective optimization.

For now this just implements NSGA-II, but other multiobjective approaches will eventually be included.

leap_ec.multiobjective.ops.crowding_distance_calc(population: list = '__no__default__')→ list
This implements the NSGA-II crowding-distance-assignment()

Note that this assumes that all the individuals have had their ranks computed since we do crowding distance
calculations within ranks.

• Deb, Kalyanmoy, Amrit Pratap, Sameer Agarwal, and T. A. M. T. Meyarivan. “A Fast and Elitist Multi-
objective Genetic Algorithm: NSGA-II.” IEEE transactions on evolutionary computation 6, no. 2 (2002):
182-197.

Parameters
population – population to calculate crowding distances

10.1. Subpackages 183

LEAP: Library for Evolutionary Algorithms in Python Documentation, Release v0.9dev

Returns
individuals with crowding distance calculated

leap_ec.multiobjective.ops.fast_nondominated_sort(population: list = '__no__default__', parents: list
= None)→ list

This implements the NSGA-II fast-non-dominated-sort()

This is really binning the population by ranks. In any case, the returned population will have an attribute, rank,
that will denote the corresponding rank in which it is a member.

• Deb, Kalyanmoy, Amrit Pratap, Sameer Agarwal, and T. A. M. T. Meyarivan. “A Fast and Elitist Multi-
objective Genetic Algorithm: NSGA-II.” IEEE transactions on evolutionary computation 6, no. 2 (2002):
182-197.

Parameters
• population – population to be ranked

• parents – optional parents population to be included with the ranking process

Returns
individuals binned by ranks

leap_ec.multiobjective.ops.per_rank_crowding_calc(ranked_population: list, is_maximizing)→ list
Calculate crowding distance within rank :param ranked_population: A population of entirely one rank :returns:
population with crowding distance calculate for one rank

leap_ec.multiobjective.ops.rank_ordinal_sort(population: list = '__no__default__', parents: list =
None)→ list

This implements Rank Ordinal Sort from Rank-based Non-dominated Sorting

Produces identical rank values to fast_nondominated_sort from the original NSGA-II implementation, however
performs much faster.

• Bogdan Burlacu. 2022. Rank-based Non-dominated Sorting. arXiv.
DOI:https://doi.org/10.48550/ARXIV.2203.13654

Parameters
• population – population to be ranked

• parents – optional parents population to be included with the ranking process

Returns
individuals binned by ranks

leap_ec.multiobjective.ops.sort_by_dominance(population: list = '__no__default__')→ list
Sort population by rank and distance

This presumes that fast_nondominated_sort() and crowding_distance_calc have been used on all individuals in
population.

Parameters
population – to be sorted

Returns
sorted population

184 Chapter 10. leap_ec package

LEAP: Library for Evolutionary Algorithms in Python Documentation, Release v0.9dev

leap_ec.multiobjective.probe module

Visualization pipeline operators tailored for multiple objectives

class leap_ec.multiobjective.probe.ParetoPlotProbe2D(ax=None, metrics=None, xlim=(0, 1), ylim=(0,
1), title='Pareto Front', step=1,
context={'leap': {'distrib': {'non_viable': 0},
'generation': 100}})

Bases: PopulationMetricsPlotProbe

Plot a 2D Pareto front of a population that has been assigned multi-objective fitness values.

If the fitness space has more than two dimensions, only the first two are plotted.

reset()

leap_ec.multiobjective.problems module

LEAP Problem classes for multiobjective optimization.

class leap_ec.multiobjective.problems.MultiObjectiveProblem(maximize: Sequence[bool])
Bases: Problem

A problem that compares individuals based on Pareto dominance.

Inherit from this class and implement the evaluate() method to implement an objective function that returns a
list of real-value fitness values.

In Pareto-dominance, an individual A is only considered “better than” an individual B if A is unambiguously
better than B: i.e. it is at least as good as B on all objectives, and it is strictly better than B on at least one
objective.

equivalent(first_fitnesses, second_fitnesses)
Return true if first_fitness and second_fitness are mutually Pareto non-dominating.

𝑎 ̸≻ 𝑏 and 𝑏 ̸≻ 𝑎

Parameters
• first_fitnesses – a np array of real-valued fitnesses for an individual, where each ele-

ment corresponds to a single objective

• second_fitnesses – same as first_fitnesses, but for a different individual

worse_than(first_fitnesses, second_fitnesses)
Return true if first_fitnesses is Pareto-dominated by second_fitnesses.

In the case of maximization over all objectives, a solution 𝑏 dominates 𝑎, written 𝑏 ≻ 𝑎, if and only if

𝑓𝑖(𝑏) ≥ 𝑓𝑖(𝑎) ∀𝑖, and
𝑓𝑖(𝑏) > 𝑓𝑗(𝑎) for some 𝑗.

Here we may maximize over some objectives, and minimize over others, depending on the values in the
self.maximize list.

Parameters
• first_fitnesses – a np array of real-valued fitnesses for an individual, where each ele-

ment corresponds to a single objective

• second_fitnesses – same as first_fitnesses, but for a different individual

10.1. Subpackages 185

LEAP: Library for Evolutionary Algorithms in Python Documentation, Release v0.9dev

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00

Objective 1

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

O
bj

ec
ti

ve
2

A

Dominates A

� A

≺ A

Neither dominated
nor dominating

Neither dominated
nor dominating

Dominated by A

Pareto dominance in two dimensions

186 Chapter 10. leap_ec package

LEAP: Library for Evolutionary Algorithms in Python Documentation, Release v0.9dev

class leap_ec.multiobjective.problems.SCHProblem

Bases: MultiObjectiveProblem

SCH problem from Deb et al’s benchmarks

This expects a numpy scalar (zero dimensional) for a phenome.

𝑓1(𝑥) = 𝑥2 (10.1)
𝑓2(𝑥) = (𝑥− 2)2(10.2)

−103 ≤ 𝑥 ≤ 103(10.3)

• Deb, Kalyanmoy, Amrit Pratap, Sameer Agarwal, and T. A. M. T. Meyarivan. “A Fast and Elitist Multi-
objective Genetic Algorithm: NSGA-II.” IEEE transactions on evolutionary computation 6, no. 2 (2002):
182-197.

evaluate(phenome)

Parameters
phenome – argument for objective functions

Returns
two fitnesses, one for 𝑓1(𝑥) and 𝑓2(𝑥)

class leap_ec.multiobjective.problems.ZDT1Problem(n=30, check_phenome=True)
Bases: ZDTBenchmarkProblem

The first problem from the classic Zitzler, Deb, and Thiele (ZDT) benchmark suite. It’s meant to provide a simple
multi-objective problem with a convex Pareto-optimal front.

𝑓1(𝑥1) = 𝑥1 (10.4)

𝑔(𝑥2, . . . , 𝑥𝑛) = 1 + 9 ·
𝑛∑︁

𝑖=2

𝑥𝑖/(𝑛− 1)(10.5)

ℎ(𝑓1, 𝑔) = 1−
√︀

𝑓1/𝑔(10.6)
𝑓2(𝑥) = 𝑔(𝑥2, . . . , 𝑥𝑛)ℎ(𝑓1(𝑥1), 𝑔(𝑥2, . . . , 𝑥𝑛))(10.7)
(10.8)
(10.9)

𝑥𝑖 ∈ [0, 1](10.10)

Traditionally the problem is used with |𝑥| = 30 dimensions in the solution space.

• Zitzler, Eckart, Kalyanmoy Deb, and Lothar Thiele. “Comparison of multiobjective evolutionary algo-
rithms: Empirical results.” Evolutionary computation 8.2 (2000): 173-195.

property bounds

Returns
the bounds of the phenome

evaluate(phenome)

Parameters
phenome – contains x

Returns
two fitnesses, one for 𝑓1(𝑥) and 𝑓2(𝑥)

10.1. Subpackages 187

LEAP: Library for Evolutionary Algorithms in Python Documentation, Release v0.9dev

class leap_ec.multiobjective.problems.ZDT2Problem(n=30, check_phenome=True)
Bases: ZDTBenchmarkProblem

The second problem from the classic Zitzler, Deb, and Thiele (ZDT) benchmark suite. This is similar to
leap_ec.problem.ZDT1Problem, except that it has a non-convex Pareto front.

𝑓1(𝑥1) = 𝑥1 (10.11)

𝑔(𝑥2, . . . , 𝑥𝑛) = 1 + 9 ·
𝑛∑︁

𝑖=2

𝑥𝑖/(𝑛− 1)(10.12)

ℎ(𝑓1, 𝑔) = 1− (𝑓1/𝑔)
2(10.13)

𝑓2(𝑥) = 𝑔(𝑥2, . . . , 𝑥𝑛)ℎ(𝑓1(𝑥1), 𝑔(𝑥2, . . . , 𝑥𝑛))(10.14)
(10.15)
(10.16)

𝑥𝑖 ∈ [0, 1](10.17)

Traditionally the problem is used with |𝑥| = 30 dimensions in the solution space.

• Zitzler, Eckart, Kalyanmoy Deb, and Lothar Thiele. “Comparison of multiobjective evolutionary algo-
rithms: Empirical results.” Evolutionary computation 8.2 (2000): 173-195.

property bounds

Returns
the bounds of the phenome

evaluate(phenome)

Parameters
phenome – contains x

Returns
two fitnesses, one for 𝑓1(𝑥) and 𝑓2(𝑥)

class leap_ec.multiobjective.problems.ZDT3Problem(n=10, check_phenome=True)
Bases: ZDTBenchmarkProblem

The third problem from the classic Zitzler, Deb, and Thiele (ZDT) benchmark suite. This function differs from
leap_ec.problem.ZDT1Problem and leap_ec.problem.ZDT1Problem in that the pareto-optimal front has
discontinuity.

𝑓1(𝑥1) = 𝑥1 (10.18)

𝑔(𝑥2, . . . , 𝑥𝑛) = 1 + 9 ·
𝑛∑︁

𝑖=2

𝑥𝑖/(𝑛− 1)(10.19)

ℎ(𝑓1, 𝑔) = 1−
√︀
𝑓1/𝑔 − (𝑓1/𝑔) sin(10𝜋𝑓1)(10.20)

𝑓2(𝑥) = 𝑔(𝑥2, . . . , 𝑥𝑛)ℎ(𝑓1(𝑥1), 𝑔(𝑥2, . . . , 𝑥𝑛))(10.21)
(10.22)
(10.23)

𝑥𝑖 ∈ [0, 1](10.24)

Traditionally the problem is used with |𝑥| = 10 dimensions in the solution space.

• Zitzler, Eckart, Kalyanmoy Deb, and Lothar Thiele. “Comparison of multiobjective evolutionary algo-
rithms: Empirical results.” Evolutionary computation 8.2 (2000): 173-195.

188 Chapter 10. leap_ec package

LEAP: Library for Evolutionary Algorithms in Python Documentation, Release v0.9dev

property bounds

Returns
the bounds of the phenome

evaluate(phenome)

Parameters
phenome – contains x

Returns
two fitnesses, one for 𝑓1(𝑥) and 𝑓2(𝑥)

class leap_ec.multiobjective.problems.ZDT4Problem(n=30, check_phenome=True)
Bases: ZDTBenchmarkProblem

The fourth problem from the classic Zitzler, Deb, and Thiele (ZDT) benchmark suite. ZDT4 contains 21^9 local
pareto-optimal front for the default parameters, allowing it to test for the EA’s ability to handle multimodality.

𝑓1(𝑥1) = 𝑥1 (10.25)

𝑔(𝑥2, . . . , 𝑥𝑛) = 1 + 10(𝑛− 1) +

𝑛∑︁
𝑖=2

(𝑥2
𝑖 − 10 cos(4𝜋𝑥𝑖))(10.26)

ℎ(𝑓1, 𝑔) = 1−
√︀
𝑓1/𝑔(10.27)

𝑓2(𝑥) = 𝑔(𝑥2, . . . , 𝑥𝑛)ℎ(𝑓1(𝑥1), 𝑔(𝑥2, . . . , 𝑥𝑛))(10.28)
(10.29)
(10.30)

𝑥1 ∈ [0, 1] 𝑥2, . . . , 𝑥𝑛 ∈ [−5, 5](10.31)

Traditionally the problem is used with |𝑥| = 30 dimensions in the solution space.

• Zitzler, Eckart, Kalyanmoy Deb, and Lothar Thiele. “Comparison of multiobjective evolutionary algo-
rithms: Empirical results.” Evolutionary computation 8.2 (2000): 173-195.

property bounds

Returns
the bounds of the phenome

evaluate(phenome)

Parameters
phenome – contains x

Returns
two fitnesses, one for 𝑓1(𝑥) and 𝑓2(𝑥)

class leap_ec.multiobjective.problems.ZDT5Problem(n=11, check_phenome=True)
Bases: ZDTBenchmarkProblem

The fifth problem from the classic Zitzler, Deb, and Thiele (ZDT) benchmark suite. In contrast to the other ZDT
problems, ZDT5 takes a binary string as input.

Unlike the other ZDT problems, ZDT5Problem additionally provides a phenome_length property, denoting the
length of the flattened binary sequence x. This property is intended to ease the creation of binary sequence

10.1. Subpackages 189

LEAP: Library for Evolutionary Algorithms in Python Documentation, Release v0.9dev

phenomes for input into the problem.

𝑢(𝑥𝑖) = unitation(𝑥𝑖) (10.32)

𝑣(𝑢(𝑥𝑖)) =

{︂
2 + 𝑢(𝑥𝑖) 𝑖𝑓𝑢(𝑥𝑖) < 5
1 𝑖𝑓𝑢(𝑥𝑖) = 5

}︂
(10.33)

(10.34)
(10.35)
𝑓1(𝑥1) = 1 + 𝑢(𝑥1)(10.36)

𝑔(𝑥2, . . . , 𝑥𝑛) =

𝑛∑︁
𝑖=2

𝑣(𝑢(𝑥𝑖))(10.37)

ℎ(𝑓1, 𝑔) = 1/𝑓1(10.38)
𝑓2(𝑥) = 𝑔(𝑥2, . . . , 𝑥𝑛)ℎ(𝑓1(𝑥1), 𝑔(𝑥2, . . . , 𝑥𝑛))(10.39)

(10.40)
(10.41)

𝑥1 ∈ {0, 1}30 𝑥2, . . . , 𝑥𝑛 ∈ {0, 1}5(10.42)

Traditionally the problem is used with |𝑥| = 11 dimensions in the solution space. This translates to a flattened
binary sequence of |𝑝ℎ𝑒𝑛𝑜𝑚𝑒𝑥| = 80.

• Zitzler, Eckart, Kalyanmoy Deb, and Lothar Thiele. “Comparison of multiobjective evolutionary algo-
rithms: Empirical results.” Evolutionary computation 8.2 (2000): 173-195.

property bounds

Returns
the bounds of the phenome

evaluate(phenome)

Parameters
phenome – the flattened binary sequence x

Returns
two fitnesses, one for 𝑓1(𝑥) and 𝑓2(𝑥)

property phenome_length

Returns
the length of the flattened binary sequence x

class leap_ec.multiobjective.problems.ZDT6Problem(n=10, check_phenome=True)
Bases: ZDTBenchmarkProblem

The sixth problem from the classic Zitzler, Deb, and Thiele (ZDT) benchmark suite. This function exhibits a
nonuniformly distributed pareto front, as well as a lower density of solutions nearer to the pareto front.

𝑓1(𝑥1) = 1− exp(−4𝑥1) sin
6(6𝜋𝑥1) (10.43)

𝑔(𝑥2, . . . , 𝑥𝑛) = 1 + 9 · ((
𝑛∑︁

𝑖=2

𝑥𝑖)/(𝑛− 1))0.25(10.44)

ℎ(𝑓1, 𝑔) = 1− (𝑓1/𝑔)
2(10.45)

𝑓2(𝑥) = 𝑔(𝑥2, . . . , 𝑥𝑛)ℎ(𝑓1(𝑥1), 𝑔(𝑥2, . . . , 𝑥𝑛))(10.46)
(10.47)
(10.48)

𝑥𝑖 ∈ [0, 1](10.49)

190 Chapter 10. leap_ec package

LEAP: Library for Evolutionary Algorithms in Python Documentation, Release v0.9dev

Traditionally the problem is used with |𝑥| = 10 dimensions in the solution space.

• Zitzler, Eckart, Kalyanmoy Deb, and Lothar Thiele. “Comparison of multiobjective evolutionary algo-
rithms: Empirical results.” Evolutionary computation 8.2 (2000): 173-195.

property bounds

Returns
the bounds of the phenome

evaluate(phenome)

Parameters
phenome – contains x

Returns
two fitnesses, one for 𝑓1(𝑥) and 𝑓2(𝑥)

class leap_ec.multiobjective.problems.ZDTBenchmarkProblem(n, check_phenome=True)
Bases: MultiObjectiveProblem

The base class for problems from the classic Zitzler, Deb, and Thiele (ZDT) benchmark suite.

Each problem is of the form:

Minimize 𝒯 (𝑥) = (𝑓1(𝑥1), 𝑓2(𝑥)) (10.50)
subject to 𝑓2(𝑥) = 𝑔(𝑥2, . . . , 𝑥𝑛)ℎ(𝑓1(𝑥1), 𝑔(𝑥2, . . . , 𝑥𝑛))(10.51)

where 𝑥 = (𝑥1, . . . , 𝑥𝑚)(10.52)
(10.53)

For reliability when testing, each problem has been provided with a check_phenome parameter to ensure that
phenomes match the expected form and bounds of the problem.

• Zitzler, Eckart, Kalyanmoy Deb, and Lothar Thiele. “Comparison of multiobjective evolutionary algo-
rithms: Empirical results.” Evolutionary computation 8.2 (2000): 173-195.

abstract property bounds

Returns
the bounds of the phenome

Module contents

10.1.8 leap_ec.real_rep package

Submodules

leap_ec.real_rep.initializers module

Initializers for real values.

leap_ec.real_rep.initializers.create_real_vector(bounds)
A closure for initializing lists of real numbers for real-valued genomes, sampled from a uniform distribution.

Having a closure allows us to just call the returned function N times in Individual.create_population().

TODO Allow either a single tuple or a test_sequence of tuples for bounds. —Siggy

Parameters
bounds – a list of (min, max) values bounding the uniform sampline of each element

10.1. Subpackages 191

LEAP: Library for Evolutionary Algorithms in Python Documentation, Release v0.9dev

Returns
A function that, when called, generates a random genome.

E.g., can be used for Individual.create_population()

>>> from leap_ec.decoder import IdentityDecoder
>>> from . problems import SpheroidProblem
>>> bounds = [(0, 1), (0, 1), (-1, 100)]
>>> population = Individual.create_population(10, create_real_vector(bounds),
... decoder=IdentityDecoder(),
... problem=SpheroidProblem())

leap_ec.real_rep.ops module

Pipeline operators for real-valued representations

leap_ec.real_rep.ops.apply_hard_bounds(genome, hard_bounds)
A helper that ensures that every gene is contained within the given bounds.

Parameters
• genome – list of values to apply bounds to.

• hard_bounds – if a (low, high) tuple, the same bounds will be used for every gene. If a list
of tuples is given, then the ith bounds will be applied to the ith gene.

Both sides of the range are inclusive:

>>> genome = np.array([0, 10, 20, 30, 40, 50])
>>> apply_hard_bounds(genome, hard_bounds=(20, 40))
array([20, 20, 20, 30, 40, 40])

Different bounds can be used for each locus by passing in a list of tuples:

>>> bounds= [(0, 1), (0, 1), (50, 100), (50, 100), (0, 100), (0, 10)]
>>> apply_hard_bounds(genome, hard_bounds=bounds)
array([0, 1, 50, 50, 40, 10])

leap_ec.real_rep.ops.genome_mutate_gaussian(genome='__no__default__', std: float = '__no__default__',
expected_num_mutations='__no__default__', bounds:
Tuple[float, float] = (-inf, inf), transform_slope: float = 1.0,
transform_intercept: float = 0.0)

Perform Gaussian mutation directly on real-valued genes (rather than on an Individual).

This used to be inside mutate_gaussian, but was moved outside it so that leap_ec.segmented.ops.apply_mutation
could directly use this function, thus saving us from doing a copy-n-paste of the same code to the segmented
sub-package.

Parameters
• genome – of real-valued numbers that will potentially be mutated

• std – the mutation width—either a single float that will be used for all genes, or a list of
floats specifying the mutation width for each gene individually.

• expected_num_mutations – on average how many mutations are expected

Returns
mutated genome

192 Chapter 10. leap_ec package

LEAP: Library for Evolutionary Algorithms in Python Documentation, Release v0.9dev

leap_ec.real_rep.ops.mutate_gaussian(next_individual: Iterator = '__no__default__',
std='__no__default__', expected_num_mutations: Union[int, str] =
None, bounds=(-inf, inf), transform_slope: float = 1.0,
transform_intercept: float = 0.0)→ Iterator

Mutate and return an Individual with a real-valued representation.

This operators on an iterator of Individuals:

>>> from leap_ec.individual import Individual
>>> from leap_ec.real_rep.ops import mutate_gaussian
>>> import numpy as np
>>> pop = iter([Individual(np.array([1.0, 0.0]))])

Mutation can either use the same parameters for all genes:

>>> op = mutate_gaussian(std=1.0, expected_num_mutations='isotropic', bounds=(-5,␣
→˓5))
>>> mutated = next(op(pop))

Or we can specify the std and bounds independently for each gene:

>>> pop = iter([Individual(np.array([1.0, 0.0]))])
>>> op = mutate_gaussian(std=[0.5, 1.0],
... expected_num_mutations='isotropic',
... bounds=[(-1, 1), (-10, 10)]
...)
>>> mutated = next(op(pop))

Parameters
• next_individual – to be mutated

• std – standard deviation to be equally applied to all individuals; this can be a scalar value
or a “shadow vector” of standard deviations

• expected_num_mutations – if an int, the expected number of mutations per individual,
on average. If ‘isotropic’, all genes will be mutated.

• bounds – to clip for mutations; defaults to (- ∞, ∞)

Returns
a generator of mutated individuals.

leap_ec.real_rep.problems module

This module contains a variety of classic real-valued optimization problems that frequently occur in research bench-
marks.

It also contains helpers for translating, rotating, and visualizing them.

class leap_ec.real_rep.problems.AckleyProblem(a=20, b=0.2, c=6.283185307179586, maximize=False)
Bases: ScalarProblem

𝑓(x) = −𝑎 exp

⎛⎝−𝑏

⎯⎸⎸⎷1

𝑑

𝑑∑︁
𝑖=1

𝑥2
𝑖

⎞⎠− exp

(︃
1

𝑑

𝑑∑︁
𝑖=1

cos(𝑐𝑥𝑖)

)︃
+ 𝑎+ exp(1)

Parameters

10.1. Subpackages 193

LEAP: Library for Evolutionary Algorithms in Python Documentation, Release v0.9dev

• a (float) – depth parameter for the bowl-shaped macrostructure

• b (float) – exponential scale parameter for the bowl

• c (float) – wavenumber (frequency) of the cosine pattern of local optima

• maximize (bool) – the function is maximized if True, else minimized.

from leap_ec.real_rep.problems import AckleyProblem, plot_2d_problem
import math
problem = AckleyProblem(a=20, b=0.2, c=2*math.pi)
bounds = AckleyProblem.bounds # Contains traditional bounds
plot_2d_problem(problem, xlim=bounds, ylim=bounds, granularity=0.25)

30 20 10 0 10 20 30 30
20

10
0

10
20

30

5

10

15

20

bounds = [-32.768, 32.768]

evaluate(phenome)
Computes the function value from a real-valued phenome.

Parameters
phenome – real-valued vector to be evaluated

Returns
its fitness.

class leap_ec.real_rep.problems.CosineFamilyProblem(alpha, global_optima_counts,
local_optima_counts, maximize=False)

194 Chapter 10. leap_ec package

LEAP: Library for Evolutionary Algorithms in Python Documentation, Release v0.9dev

Bases: ScalarProblem

A configurable multi-modal function based on combinations of cosines, taken from the problem generators pro-
posed by Rönkkönen et al. [RonkkonenLKL08].

𝑓cos(x) =

∑︀𝑛
𝑖=1 − cos((𝐺𝑖 − 1)2𝜋𝑥𝑖)− 𝛼 · cos((𝐺𝑖 − 1)2𝜋𝐿𝑖𝑥𝑖)

2𝑛

where 𝐺𝑖 and 𝐿𝑖 are parameters that indicate the number of global and local optima, respectively, in the ith
dimension.

Parameters
• alpha (float) – parameter that controls the depth of the local optima.

• global_optima_counts ([int]) – list of integers indicating the number of global optima
for each dimension.

• local_optima_counts ([int]) – list of integers indicated the number of local optima for
each dimension.

• maximize – the function is maximized if True, else minimized.

from leap_ec.real_rep.problems import CosineFamilyProblem, plot_2d_problem
problem = CosineFamilyProblem(alpha=1.0, global_optima_counts=[2, 2], local_optima_
→˓counts=[2, 2])
bounds = CosineFamilyProblem.bounds # Contains traditional bounds
plot_2d_problem(problem, xlim=bounds, ylim=bounds, granularity=0.025)

The number of optima can be varied independently by each dimension:

from leap_ec.real_rep.problems import CosineFamilyProblem, plot_2d_problem
problem = CosineFamilyProblem(alpha=3.0, global_optima_counts=[4, 2], local_optima_
→˓counts=[2, 2])
bounds = CosineFamilyProblem.bounds # Contains traditional bounds
plot_2d_problem(problem, xlim=bounds, ylim=bounds, granularity=0.025)

bounds = (0, 1)

evaluate(phenome)
Computes the function value from a real-valued phenome.

Parameters
phenome – phenome with a real-valued phenome vector to be evaluated

Returns
its fitness.

class leap_ec.real_rep.problems.GaussianProblem(width=1, height=1, maximize=True)
Bases: ScalarProblem

A multidimensional, isotropic Gaussian function, defined by

𝐴 exp

(︃
−

𝑛∑︁
𝑖

(︁𝑥𝑖

𝑤

)︁2)︃

Parameters
• width (float) – the width parameter 𝑤

10.1. Subpackages 195

LEAP: Library for Evolutionary Algorithms in Python Documentation, Release v0.9dev

0.0
0.2

0.4
0.6

0.8
1.0 0.0

0.2
0.4

0.6
0.8

1.0
1.0
0.8
0.6
0.4
0.2

0.0
0.2
0.4

196 Chapter 10. leap_ec package

LEAP: Library for Evolutionary Algorithms in Python Documentation, Release v0.9dev

0.0
0.2

0.4
0.6

0.8
1.0 0.0

0.2
0.4

0.6
0.8

1.0
2.0
1.5
1.0
0.5

0.0
0.5
1.0
1.5

10.1. Subpackages 197

LEAP: Library for Evolutionary Algorithms in Python Documentation, Release v0.9dev

• height (float) – the height parameter 𝐴

from leap_ec.real_rep.problems import GaussianProblem, plot_2d_problem
bounds = GaussianProblem.bounds # Some typical bounds
problem = GaussianProblem(width=1, height=1)
plot_2d_problem(problem, xlim=bounds, ylim=bounds, granularity=0.1)

3 2 1 0 1 2 3 3
2

1
0

1
2

3

0.2
0.4
0.6

0.8

1.0

bounds = (-3, 3)

evaluate(phenome)
Evaluate the given phenome.

Practitioners must over-ride this member function.

Note that by default the individual comparison operators assume a maximization problem; if this is a min-
imization problem, then just negate the value when returning the fitness.

Parameters
phenome – the phenome to evaluate (this will not be modified)

Returns
the fitness value

class leap_ec.real_rep.problems.GriewankProblem(maximize=False)
Bases: ScalarProblem

198 Chapter 10. leap_ec package

LEAP: Library for Evolutionary Algorithms in Python Documentation, Release v0.9dev

The classic Griewank problem. Like the RastriginProblem function, the Griewank has a quadratic global
structure with many local optima that are distrib in a regular pattern.

𝑓(x) =

𝑑∑︁
𝑖=1

𝑥2
𝑖

4000
−

𝑑∏︁
𝑖=1

cos

(︂
𝑥𝑖√
𝑖

)︂
+ 1

Parameters
maximize (bool) – the function is maximized if True, else minimized.

from leap_ec.real_rep.problems import GriewankProblem, plot_2d_problem
bounds = GriewankProblem.bounds # Contains traditional bounds
plot_2d_problem(GriewankProblem(), xlim=bounds, ylim=bounds, granularity=10)

600 400 200 0 200 400 600 600
400

200
0
200

400
600

0
25
50
75
100
125
150
175

from leap_ec.real_rep.problems import GriewankProblem, plot_2d_problem
bounds = [-50, 50]
plot_2d_problem(GriewankProblem(), xlim=bounds, ylim=bounds, granularity=1)

bounds = [-600, 600]

evaluate(phenome)
Computes the function value from a real-valued phenome.

Parameters
phenome – real-valued vector to be evaluated

10.1. Subpackages 199

LEAP: Library for Evolutionary Algorithms in Python Documentation, Release v0.9dev

40
20

0
20

40
40

20
0

20
40

0.0
0.5
1.0
1.5
2.0
2.5
3.0

200 Chapter 10. leap_ec package

LEAP: Library for Evolutionary Algorithms in Python Documentation, Release v0.9dev

Returns
its fitness.

class leap_ec.real_rep.problems.LangermannProblem(m=5, c=(1, 2, 5, 2, 3), a=((3, 5), (5, 2), (2, 1), (1,
4), (7, 9)), maximize=False)

Bases: ScalarProblem

A popular multi-modal test function built by summing together 𝑚 terms.

𝑓(x) = −
𝑚∑︁
𝑖=1

𝑐𝑖 exp

⎛⎝− 1

𝜋

𝑑∑︁
𝑗=1

(𝑥𝑗 −𝐴𝑖𝑗)
2

⎞⎠ cos

⎛⎝𝜋

𝑑∑︁
𝑗=1

(𝑥𝑗 −𝐴𝑖𝑗)
2

⎞⎠
Langermann’s function is parameterized by a vector 𝑐𝑖 of length 𝑚 and a matrix 𝐴𝑖𝑗 of dimension 𝑚× 𝑑. This
class uses the traditional parameterization as the default, with 𝑚 = 5 and

𝑐 = (1, 2, 5, 2, 3)

𝐴 =

⎡⎢⎢⎢⎢⎣
3 5
5 2
2 1
1 4
7 9

⎤⎥⎥⎥⎥⎦ .

Parameters
• m (int) – total number of terms in the function’s sum

• c ([float]) – amplitude coefficients for each term

• a ([[float]]) – offsets points for each term

• maximize (bool) – the function is maximized if True, else minimized.

from leap_ec.real_rep.problems import LangermannProblem, plot_2d_problem
bounds = LangermannProblem.bounds # Contains traditional bounds
plot_2d_problem(LangermannProblem(), xlim=bounds, ylim=bounds, granularity=0.2)

bounds = [0, 10]

default_a = ((3, 5), (5, 2), (2, 1), (1, 4), (7, 9))

evaluate(phenome)
Computes the function value from a real-valued phenome.

Parameters
phenome – real-valued vector to be evaluated

Returns
its fitness.

class leap_ec.real_rep.problems.LunacekProblem(N, d=1.0, mu_1=2.5, mu_2=None, s=None,
maximize=False)

Bases: ScalarProblem

Lunacek’s function is also know as the “double Rastrigin” or “bi-Rastrigin” problem, because it overlays a
RastriginProblem-style cosine function across a pair of spheroid functions.

This function was designed to model the double-funnel macrostructure that occurs in some difficult cases of the
Lennard-Jones function (a famous function from molecular dynamics).

𝑓(x) = min

(︃{︃
𝑁∑︁
𝑖=1

(𝑥𝑖 − 𝜇1)
2

}︃
,

{︃
𝑑 ·𝑁 + 𝑠 ·

𝑁∑︁
𝑖=1

(𝑥𝑖 − 𝜇2)
2

}︃)︃
+ 10

𝑁∑︁
𝑖=1

(1− cos(2𝜋(𝑥𝑖 − 𝜇𝑖))),

10.1. Subpackages 201

LEAP: Library for Evolutionary Algorithms in Python Documentation, Release v0.9dev

0
2

4
6

8
10 0

2
4

6
8

10

4

2

0

2

4

202 Chapter 10. leap_ec package

LEAP: Library for Evolutionary Algorithms in Python Documentation, Release v0.9dev

where 𝑁 is the dimensionality of the solution vector, and the second sphere center parameter 𝜇2 is typically
given by

𝜇2 = −
√︂

𝜇2
1 − 𝑑

𝑠

and 𝑠 is by default a function on 𝑁 :

𝑠 = 1− 1

2
√
𝑁 + 20− 8.2

These respective defaults are used for 𝜇2 and 𝑠 whenever mu_2 and s are set to None.

Because of these complicated defaults, this class requires that you explicitly set the dimensionality of 𝑁 of the
expected input solutions. A warning will be thrown if an input solution is encountered that doesn’t match the
expected dimensionality.

Parameters
• N (int) – dimensionality of the anticipated input solutions

• d (float) – base fitness value of the second spheroid

• mu_1 (float) – offset of the first spheroid

• mu_2 (float) – offset of the second spheroid (if None, this will be calculated automatically)

• s (float) – scale parameter for the second spheroid (if None, this will be calculated auto-
matically)

• maximize (bool) – the function is maximized if True, else minimized.

from leap_ec.real_rep.problems import LunacekProblem, plot_2d_problem
bounds = LunacekProblem.bounds # Contains traditional bounds
plot_2d_problem(LunacekProblem(N=2), xlim=bounds, ylim=bounds, granularity=0.1)

bounds = (-5, 5)

evaluate(phenome)
Computes the function value from a real-valued phenome.

Parameters
phenome – real-valued vector to be evaluated

Returns
its fitness.

class leap_ec.real_rep.problems.MatrixTransformedProblem(problem, matrix, maximize=None)
Bases: ScalarProblem

Apply a linear transformation to a fitness function.

Parameters
matrix – an nxn matrix, where n is the genome length.

Returns
a function that first applies -matrix to the input, then applies fun to the transformed input.

For example, here we manually construct a 2x2 rotation matrix and apply it to the leap.RosenbrockProblem
function:

10.1. Subpackages 203

LEAP: Library for Evolutionary Algorithms in Python Documentation, Release v0.9dev

4
2

0
2

4
4

2
0

2
4

0
10
20
30
40
50
60

204 Chapter 10. leap_ec package

LEAP: Library for Evolutionary Algorithms in Python Documentation, Release v0.9dev

from matplotlib import pyplot as plt
from leap_ec.real_rep.problems import RosenbrockProblem, MatrixTransformedProblem,␣
→˓plot_2d_problem

original_problem = RosenbrockProblem()
theta = np.pi/2
matrix = [[np.cos(theta), -np.sin(theta)], [np.sin(theta), np.
→˓cos(theta)]]

transformed_problem = MatrixTransformedProblem(original_problem, matrix)

fig = plt.figure(figsize=(12, 8))

plt.subplot(221, projection='3d')
bounds = RosenbrockProblem.bounds # Contains traditional bounds
plot_2d_problem(original_problem, xlim=bounds, ylim=bounds, ax=plt.gca(),␣
→˓granularity=0.025)

plt.subplot(222, projection='3d')
plot_2d_problem(transformed_problem, xlim=bounds, ylim=bounds, ax=plt.gca(),␣
→˓granularity=0.025)

plt.subplot(223)
plot_2d_problem(original_problem, kind='contour', xlim=bounds, ylim=bounds, ax=plt.
→˓gca(), granularity=0.025)

plt.subplot(224)
plot_2d_problem(transformed_problem, kind='contour', xlim=bounds, ylim=bounds,␣
→˓ax=plt.gca(), granularity=0.025)

evaluate(phenome)
Evaluated the fitness of a point on the transformed fitness landscape.

For example, consider a sphere function whose global optimum is situated at (0, 1):

>>> import numpy as np
>>> s = TranslatedProblem(SpheroidProblem(), offset=[0, 1])
>>> round(s.evaluate(np.array([0, 1])), 5)
0

Now let’s take a rotation matrix that transforms the space by pi/2 radians:

>>> import numpy as np
>>> theta = np.pi/2
>>> matrix = [[np.cos(theta), -np.sin(theta)], [np.
→˓sin(theta), np.cos(theta)]]
>>> r = MatrixTransformedProblem(s, matrix)

The rotation has moved the new global optimum to (1, 0)

>>> round(r.evaluate(np.array([1, 0])), 5)
0.0

The point (0, 1) lies at a distance of sqrt(2) from the new optimum, and has a fitness of 2:

10.1. Subpackages 205

LEAP: Library for Evolutionary Algorithms in Python Documentation, Release v0.9dev

2 1 0 1 2 2
1

0
1

2

1000
2000
3000

2 1 0 1 2 2
1

0
1

2

1000
2000
3000

2.0 1.5 1.0 0.5 0.0 0.5 1.0 1.5 2.0
2.0

1.5

1.0

0.5

0.0

0.5

1.0

1.5

2.0

2.0 1.5 1.0 0.5 0.0 0.5 1.0 1.5 2.0
2.0

1.5

1.0

0.5

0.0

0.5

1.0

1.5

2.0

>>> round(r.evaluate(np.array([0, 1])), 5)
2.0

classmethod random_orthonormal(problem, dimensions, maximize=None)
Create a MatrixTransformedProblem that performs a random rotation and/or inversion of the function.

We accomplish this by generating a random orthonormal basis for R^n and plugging the resulting matrix
into MatrixTransformedProblem.

The classic algorithm we use here is based on the Gramm-Schmidt process: we first generate a set of
random vectors, and then convert them into an orthonormal basis. This approach is described in Hansen
and Ostermeier’s original CMA-ES paper:

“Completely derandomized self-adaptation in evolution strategies.” Evolutionary Computation 9.2 (2001):
159-195.

Parameters
• problem – the original ScalarProblem to apply the transform to.

• dimensions (int) – the number of elements each vector should have.

• maximize (bool) – whether to maximize or minimize the resulting fitness function. De-
faults to whatever setting the underlying problem uses.

from matplotlib import pyplot as plt
from leap_ec.real_rep.problems import CosineFamilyProblem,␣
→˓MatrixTransformedProblem, plot_2d_problem

(continues on next page)

206 Chapter 10. leap_ec package

LEAP: Library for Evolutionary Algorithms in Python Documentation, Release v0.9dev

(continued from previous page)

original_problem = CosineFamilyProblem(alpha=1.0, global_optima_counts=[2, 3],␣
→˓local_optima_counts=[2, 3])

transformed_problem = MatrixTransformedProblem.random_orthonormal(original_
→˓problem, 2)

fig = plt.figure(figsize=(12, 8))

plt.subplot(221, projection='3d')
bounds = original_problem.bounds
plot_2d_problem(original_problem, xlim=bounds, ylim=bounds, ax=plt.gca(),␣
→˓granularity=0.025)

plt.subplot(222, projection='3d')
plot_2d_problem(transformed_problem, xlim=bounds, ylim=bounds, ax=plt.gca(),␣
→˓granularity=0.025)

plt.subplot(223)
plot_2d_problem(original_problem, kind='contour', xlim=bounds, ylim=bounds,␣
→˓ax=plt.gca(), granularity=0.025)

plt.subplot(224)
plot_2d_problem(transformed_problem, kind='contour', xlim=bounds, ylim=bounds,␣
→˓ax=plt.gca(), granularity=0.025)

0.0 0.2 0.4 0.6 0.8 1.0 0.0
0.2

0.4
0.6

0.8
1.0

1.0

0.5

0.0

0.5

0.0 0.2 0.4 0.6 0.8 1.0 0.0
0.2

0.4
0.6

0.8
1.0

1.0

0.5

0.0

0.5

0.0 0.2 0.4 0.6 0.8
0.0

0.2

0.4

0.6

0.8

0.0 0.2 0.4 0.6 0.8
0.0

0.2

0.4

0.6

0.8

10.1. Subpackages 207

LEAP: Library for Evolutionary Algorithms in Python Documentation, Release v0.9dev

class leap_ec.real_rep.problems.NoisyQuarticProblem(maximize=False)
Bases: ScalarProblem

The classic ‘quadratic quartic’ function with Gaussian noise:

𝑓(x) =

𝑛∑︁
𝑖=1

𝑖𝑥4
𝑖 + gauss(0, 1)

Parameters
maximize (bool) – the function is maximized if True, else minimized.

from leap_ec.real_rep.problems import NoisyQuarticProblem, plot_2d_problem
bounds = NoisyQuarticProblem.bounds # Contains traditional bounds
plot_2d_problem(NoisyQuarticProblem(), xlim=bounds, ylim=bounds, granularity=0.025)

1.0 0.5 0.0
0.5

1.0
1.0

0.5
0.0

0.5
1.0

4
2

0
2
4
6
8
10

bounds = (-1.28, 1.28)

evaluate(phenome)
Computes the function value from a real-valued list phenome (the output varies, since the function has
noise):

>>> phenome = [3.5, -3.8, 5.0]
>>> r = NoisyQuarticProblem().evaluate(phenome)
>>> print(f'Result: {r}')
Result: ...

208 Chapter 10. leap_ec package

LEAP: Library for Evolutionary Algorithms in Python Documentation, Release v0.9dev

Parameters
phenome – real-valued vector to be evaluated

Returns
its fitness

worse_than(first_fitness, second_fitness)
We minimize by default:

>>> s = NoisyQuarticProblem()
>>> s.worse_than(100, 10)
True

>>> s = NoisyQuarticProblem(maximize=True)
>>> s.worse_than(100, 10)
False

class leap_ec.real_rep.problems.ParabaloidProblem(diagonal_matrix: ndarray, rotation_matrix:
ndarray, maximize=False)

Bases: ScalarProblem

A generalization of the SpheroidProblem into parabaloids (including elliptic and hyperbolic parabaloids).

We construct the parabaloid by combining a diagonal matrix (which defines an axis-aligned parabaloid) with
an orthornormal rotation. Together, these make up the eigenvalues and eigenbasis, respectively, of an arbitrary
parabaloid:

A = R⊤DR

We then compute fitness by interpretting 𝐴 as a quadratic form:

𝑓(𝑥) = 𝑥⊤A𝑥

When the eigenvalues are all positive, then the result is an elliptic parabaloid

from leap_ec.real_rep .problems import ParabaloidProblem, plot_2d_problem
from matplotlib import pyplot as plt
import numpy as np

p = ParabaloidProblem(diagonal_matrix=np.diag([1, 5]), rotation_matrix=np.
→˓identity(2))
plot_2d_problem(p, xlim=(-10, 10), ylim=(-10, 10), granularity=0.5)
plt.show()

If one or more eigenvalues are negative, then a hyperbolic parabloid results, which has a saddle shape:

from leap_ec.real_rep .problems import ParabaloidProblem, plot_2d_problem
from matplotlib import pyplot as plt
import numpy as np

p = ParabaloidProblem(diagonal_matrix=np.diag([-3, 5]), rotation_matrix=np.
→˓identity(2))
plot_2d_problem(p, xlim=(-10, 10), ylim=(-10, 10), granularity=0.5)
plt.show()

10.1. Subpackages 209

LEAP: Library for Evolutionary Algorithms in Python Documentation, Release v0.9dev

10
5

0
5

10 10
5

0
5

10
0

100
200
300
400
500
600

210 Chapter 10. leap_ec package

LEAP: Library for Evolutionary Algorithms in Python Documentation, Release v0.9dev

10
5

0
5

10 10
5

0
5

10
300
200
100
0

100
200
300
400
500

10.1. Subpackages 211

LEAP: Library for Evolutionary Algorithms in Python Documentation, Release v0.9dev

evaluate(phenome)
Evaluate the given phenome.

Practitioners must over-ride this member function.

Note that by default the individual comparison operators assume a maximization problem; if this is a min-
imization problem, then just negate the value when returning the fitness.

Parameters
phenome – the phenome to evaluate (this will not be modified)

Returns
the fitness value

class leap_ec.real_rep.problems.QuadraticFamilyProblem(diagonal_matrices: list, rotation_matrices:
list, offset_vectors: list, fitness_offsets: list,
maximize=False)

Bases: ScalarProblem

A configurable multi-modal function based on combinations of spheroids or parabaloids. Taken from the problem
generators proposed by Rönkkönen et al. [RonkkonenLKL08].

The function is given by

𝑓(x) = min
𝑖=1,2,...,𝑞

(︀
(x− p𝑖)

⊤B−1
𝑖 (x− p𝑖) + 𝑣𝑖

)︀
where the p𝑖 gives the center of each quadratic (i.e. the location of each local minimum), the 𝑣𝑖 give their fitness
values, and the B−1

𝑖 are symmetric matrices.

The easiest way to create one of these problems is to use the random generator:

from leap_ec.real_rep.problems import QuadraticFamilyProblem, plot_2d_problem
from matplotlib import pyplot as plt

problem = QuadraticFamilyProblem.generate(dimensions=2, num_basins=30)
plot_2d_problem(problem, xlim=(-10, 10), ylim=(-10, 10), granularity=0.5)
plt.show()

You can also specify the problem structure directly by providing two matrices for each parabaloid along with an
offset vector (for translation) and a scalar offset (to define the minimum fitness value for the basin):

from leap_ec.real_rep.problems import QuadraticFamilyProblem, plot_2d_problem,␣
→˓random_orthonormal_matrix
from matplotlib import pyplot as plt
import numpy as np

Define the parameters for each parabaloid

diag1 = np.diag([2, 4]) # Diagonal matrix defining the widths (eigenvalues) of␣
→˓the basin for each dimension
rot1 = np.identity(2) # Rotation matrix, in this case the identity (no␣
→˓rotation)
offset1 = np.array([-1, -1]) # Offset used to translate the basin location
fitness1 = 0 # Fitness value of the local optimum

diag2 = np.diag([5, 1])
rot2 = random_orthonormal_matrix(dimensions=2) # Apply a random rotation to the␣

(continues on next page)

212 Chapter 10. leap_ec package

LEAP: Library for Evolutionary Algorithms in Python Documentation, Release v0.9dev

10
5

0
5

10 10
5

0
5

10

20
40
60
80
100
120

10.1. Subpackages 213

LEAP: Library for Evolutionary Algorithms in Python Documentation, Release v0.9dev

(continued from previous page)

→˓second basin
offset2 = np.array([3, 4])
fitness2 = 100.0

Build the problem
problem = QuadraticFamilyProblem(

diagonal_matrices = [diag1, diag2],
rotation_matrices = [rot1, rot2],
offset_vectors = [offset1, offset2],
fitness_offsets = [fitness1, fitness2]

)

Visualize
plot_2d_problem(problem, xlim=(-10, 10), ylim=(-10, 10), granularity=0.5)
plt.show()

10
5

0
5

10 10
5

0
5

10
0

100
200
300
400
500
600

property dimensions

evaluate(phenome)
Evaluate the given phenome.

Practitioners must over-ride this member function.

214 Chapter 10. leap_ec package

LEAP: Library for Evolutionary Algorithms in Python Documentation, Release v0.9dev

Note that by default the individual comparison operators assume a maximization problem; if this is a min-
imization problem, then just negate the value when returning the fitness.

Parameters
phenome – the phenome to evaluate (this will not be modified)

Returns
the fitness value

classmethod generate(dimensions: int, num_basins: int, num_global_optima: int = 1, width_bounds:
tuple = (1, 5), offset_bounds: tuple = (-10, 10), fitness_offset_bounds: tuple = (10,
100))

Convenient method to generate a QuadraticFamilyProblem by randomly sampling the matrices that define
it.

>>> problem = QuadraticFamilyProblem.generate(10, 20, num_global_optima = 2)
>>> x = problem.evaluate(np.array([0.0, 0.5, 0.0, 0.6, 0.0, 0.7, 0.6, 0.8, 4.3,␣
→˓0.2]))

property num_basins

class leap_ec.real_rep.problems.RastriginProblem(a=1.0, maximize=False)
Bases: ScalarProblem

The classic Rastrigin problem. The Rastrigin provides a real-valued fitness landscape with a quadratic global
structure (like the SpheroidProblem), plus a sinusoidal local structure with many local optima.

𝑓(𝑥⃗) = 𝐴𝑛+

𝑛∑︁
𝑖=1

𝑥2
𝑖 −𝐴 cos(2𝜋𝑥𝑖)

Parameters
maximize (bool) – the function is maximized if True, else minimized.

from leap_ec.real_rep.problems import RastriginProblem, plot_2d_problem
bounds = RastriginProblem.bounds # Contains traditional bounds
plot_2d_problem(RastriginProblem(), xlim=bounds, ylim=bounds, granularity=0.025)

bounds = (-5.12, 5.12)

evaluate(phenome)
Computes the function value from a real-valued list phenome:

>>> phenome = [1.0/12, 0]
>>> RastriginProblem().evaluate(phenome)
0.1409190406...

Parameters
phenome – real-valued vector to be evaluated

Returns
its fitness

worse_than(first_fitness, second_fitness)
We minimize by default:

10.1. Subpackages 215

LEAP: Library for Evolutionary Algorithms in Python Documentation, Release v0.9dev

4 2 0
2

4
4

2
0

2
4

10
20
30
40
50

216 Chapter 10. leap_ec package

LEAP: Library for Evolutionary Algorithms in Python Documentation, Release v0.9dev

>>> s = RastriginProblem()
>>> s.worse_than(100, 10)
True

>>> s = RastriginProblem(maximize=True)
>>> s.worse_than(100, 10)
False

class leap_ec.real_rep.problems.RosenbrockProblem(maximize=False)
Bases: ScalarProblem

The classic RosenbrockProblem problem, a.k.a. the “banana” or “valley” function.

𝑓(x) =

𝑑−1∑︁
𝑖=1

[︀
100(𝑥𝑖+1 − 𝑥2

𝑖)
2 + (𝑥𝑖 − 1)2

]︀
Parameters
maximize (bool) – the function is maximized if True, else minimized.

from leap_ec.real_rep.problems import RosenbrockProblem, plot_2d_problem
bounds = RosenbrockProblem.bounds # Contains traditional bounds
plot_2d_problem(RosenbrockProblem(), xlim=bounds, ylim=bounds, granularity=0.025)

2
1

0
1

2 2
1

0
1

2

500
1000
1500
2000
2500
3000
3500

10.1. Subpackages 217

LEAP: Library for Evolutionary Algorithms in Python Documentation, Release v0.9dev

bounds = (-2.048, 2.048)

evaluate(phenome)
Computes the function value from a real-valued list phenome:

>>> phenome = [0.5, -0.2, 0.1]
>>> RosenbrockProblem().evaluate(phenome)
22.3

Parameters
phenome – real-valued vector to be evaluated

Returns
its fitness

worse_than(first_fitness, second_fitness)
We minimize by default:

>>> s = RosenbrockProblem()
>>> s.worse_than(100, 10)
True

>>> s = RosenbrockProblem(maximize=True)
>>> s.worse_than(100, 10)
False

class leap_ec.real_rep.problems.ScaledProblem(problem, new_bounds, maximize=None)
Bases: ScalarProblem

Scale the search space of a fitness function up or down.

evaluate(phenome)
Evaluate the given phenome.

Practitioners must over-ride this member function.

Note that by default the individual comparison operators assume a maximization problem; if this is a min-
imization problem, then just negate the value when returning the fitness.

Parameters
phenome – the phenome to evaluate (this will not be modified)

Returns
the fitness value

class leap_ec.real_rep.problems.SchwefelProblem(alpha=418.982887, maximize=False)
Bases: ScalarProblem

Schwefel’s function is another traditional multimodal test function whose local optima are distributed in a slightly
irregular way, and whose global optimum is out at the edge of the search space (with no gently sloping macrostruc-
ture to guide the algorithm toward it).

Compare this to the RastriginProblem function, whose global optimum lies at the center of a quadratic bowl
with a regular grid of local optima.

𝑓(x) =

𝑑∑︁
𝑖=1

(︁
−𝑥𝑖 · sin

(︁√︀
|𝑥𝑖|
)︁)︁

+ 𝛼 · 𝑑

218 Chapter 10. leap_ec package

LEAP: Library for Evolutionary Algorithms in Python Documentation, Release v0.9dev

Parameters
• alpha (float) – fitness offset (the default value ensures that the global optimum has zero

fitness)

• maximize (bool) – the function is maximized if True, else minimized.

from leap_ec.real_rep.problems import SchwefelProblem, plot_2d_problem
bounds = SchwefelProblem.bounds # Contains traditional bounds
plot_2d_problem(SchwefelProblem(), xlim=bounds, ylim=bounds, granularity=10)

400 200 0
200

400
400

200
0

200
400

250
500
750
1000
1250
1500

bounds = (-512, 512)

evaluate(phenome)
Computes the function value from a real-valued phenome.

Parameters
phenome – phenome with a real-valued phenome to be evaluated

Returns
its fitness.

class leap_ec.real_rep.problems.ShekelProblem(k=500, c=array([1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13,
14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25]),
maximize=False)

Bases: ScalarProblem

10.1. Subpackages 219

LEAP: Library for Evolutionary Algorithms in Python Documentation, Release v0.9dev

The classic ‘Shekel’s foxholes’ function.

𝑓(x) =
1

1
𝐾 +

∑︀25
𝑗=1

1
𝑓𝑗(x)

where

𝑓𝑗(x) = 𝑐𝑗 +

2∑︁
𝑖=1

(𝑥𝑖 − 𝑎𝑖𝑗)
6

and the points {(𝑎1𝑗 , 𝑎2𝑗)}25𝑗=1 define the functions various optima, and are given by the following hardcoded
matrix:

[𝑎𝑖𝑗] =

[︂
−32 −16 0 16 32 −32 −16 · · · 0 16 32
−32 −32 −32 −32 −32 −16 −16 · · · 32 32 32

]︂
.

Parameters
• k (int) – the value of 𝐾 in the fitness function.

• c ([int]) – list of values for the function’s 𝑐𝑗 parameters. Each c[j] approximately corre-
sponds to the depth of the jth foxhole.

• maximize (bool) – the function is maximized if True, else minimized.

• maximize – the function is maximized if True, else minimized.

from leap_ec.real_rep.problems import ShekelProblem, plot_2d_problem
bounds = ShekelProblem.bounds # Contains traditional bounds
plot_2d_problem(ShekelProblem(), xlim=bounds, ylim=bounds, granularity=0.9)

bounds = (-65.536, 65.536)

evaluate(phenome)
Computes the function value from a real-valued list phenome (the output varies, since the function has
noise).

Parameters
phenome – real-valued to be evaluated

Returns
its fitness

points = array([[-32, -16, 0, 16, 32, -32, -16, 0, 16, 32, -32, -16, 0, 16, 32, -32,
-16, 0, 16, 32, -32, -16, 0, 16, 32], [-32, -32, -32, -32, -32, -16, -16, -16, -16,
-16, 0, 0, 0, 0, 0, 16, 16, 16, 16, 16, 32, 32, 32, 32, 32]])

worse_than(first_fitness, second_fitness)
We minimize by default:

>>> s = ShekelProblem()
>>> s.worse_than(100, 10)
True

>>> s = ShekelProblem(maximize=True)
>>> s.worse_than(100, 10)
False

220 Chapter 10. leap_ec package

LEAP: Library for Evolutionary Algorithms in Python Documentation, Release v0.9dev

60 40 20 0 20 40 60 60
40

20
0

20
40

60

100
200
300

400

10.1. Subpackages 221

LEAP: Library for Evolutionary Algorithms in Python Documentation, Release v0.9dev

class leap_ec.real_rep.problems.SpheroidProblem(maximize=False)
Bases: ScalarProblem

Classic paraboloid function, known as the “sphere” or “spheroid” problem, because its equal-fitness contours
form (hyper)spheres in n > 2.

𝑓(𝑥⃗) =

𝑛∑︁
𝑖

𝑥2
𝑖

Parameters
maximize (bool) – the function is maximized if True, else minimized.

from leap_ec.real_rep.problems import SpheroidProblem, plot_2d_problem
bounds = SpheroidProblem.bounds # Contains traditional bounds
plot_2d_problem(SpheroidProblem(), xlim=bounds, ylim=bounds, granularity=0.025)

4 2 0
2

4
4

2
0

2
4

10
20
30
40
50

bounds = (-5.12, 5.12)

evaluate(phenome)
Computes the function value from a real-valued list phenome:

>>> phenome = [0.5, 0.8, 1.5]
>>> SpheroidProblem().evaluate(phenome)
3.14

222 Chapter 10. leap_ec package

LEAP: Library for Evolutionary Algorithms in Python Documentation, Release v0.9dev

Parameters
phenome – real-valued vector to be evaluated

Returns
it’s fitness, sum(phenome**2)

worse_than(first_fitness, second_fitness)
We minimize by default:

>>> s = SpheroidProblem()
>>> s.worse_than(100, 10)
True

>>> s = SpheroidProblem(maximize=True)
>>> s.worse_than(100, 10)
False

class leap_ec.real_rep.problems.StepProblem(maximize=True)
Bases: ScalarProblem

The classic ‘step’ function—a function with a linear global structure, but with stair-like plateaus at the local level.

𝑓(x) =

𝑛∑︁
𝑖=1

⌊𝑥𝑖⌋

where ⌊𝑥⌋ denotes the floor function.

Parameters
maximize (bool) – the function is maximized if True, else minimized.

from leap_ec.real_rep.problems import StepProblem, plot_2d_problem
bounds = StepProblem.bounds # Contains traditional bounds
plot_2d_problem(StepProblem(), xlim=bounds, ylim=bounds, granularity=0.025)

bounds = (-5.12, 5.12)

evaluate(phenome)
Computes the function value from a real-valued list phenome:

>>> import numpy as np
>>> phenome = np.array([3.5, -3.8, 5.0])
>>> StepProblem().evaluate(phenome)
4.0

Parameters
phenome – real-valued vector to be evaluated

Returns
its fitness

worse_than(first_fitness, second_fitness)
We maximize by default:

>>> s = StepProblem()
>>> s.worse_than(100, 10)
False

10.1. Subpackages 223

LEAP: Library for Evolutionary Algorithms in Python Documentation, Release v0.9dev

4 2 0
2

4
4

2
0

2
4

10

5

0

5

10

224 Chapter 10. leap_ec package

LEAP: Library for Evolutionary Algorithms in Python Documentation, Release v0.9dev

>>> s = StepProblem(maximize=False)
>>> s.worse_than(100, 10)
True

class leap_ec.real_rep.problems.TranslatedProblem(problem, offset, maximize=None)
Bases: ScalarProblem

Takes an existing fitness function and translates it by applying a fixed offset vector.

For example,

from matplotlib import pyplot as plt
from leap_ec.real_rep.problems import SpheroidProblem, TranslatedProblem, plot_2d_
→˓problem

original_problem = SpheroidProblem()
offset = [-1.0, -2.5]
translated_problem = TranslatedProblem(original_problem, offset)

fig = plt.figure(figsize=(12, 8))

plt.subplot(221, projection='3d')
bounds = SpheroidProblem.bounds # Contains traditional bounds
plot_2d_problem(original_problem, xlim=bounds, ylim=bounds, ax=plt.gca(),␣
→˓granularity=0.025)

plt.subplot(222, projection='3d')
plot_2d_problem(translated_problem, xlim=bounds, ylim=bounds, ax=plt.gca(),␣
→˓granularity=0.025)

plt.subplot(223)
plot_2d_problem(original_problem, kind='contour', xlim=bounds, ylim=bounds, ax=plt.
→˓gca(), granularity=0.025)

plt.subplot(224)
plot_2d_problem(translated_problem, kind='contour', xlim=bounds, ylim=bounds,␣
→˓ax=plt.gca(), granularity=0.025)

evaluate(phenome)
Evaluate the fitness of a point after translating the fitness function.

Translation can be used in higher than two dimensions:

>>> import numpy as np
>>> offset = [-1.0, -1.0, 1.0, 1.0, -5.0]
>>> t_sphere = TranslatedProblem(SpheroidProblem(), offset)
>>> genome = np.array([0.5, 2.0, 3.0, 8.5, -0.6])
>>> t_sphere.evaluate(genome)
90.86

classmethod random(problem, offset_bounds, dimensions, maximize=None)
Apply a random real-valued translation to a fitness function, sampled uniformly between min_offset and
max_offset in every dimension.

10.1. Subpackages 225

LEAP: Library for Evolutionary Algorithms in Python Documentation, Release v0.9dev

4 2 0 2 4 4
2
0

2
4

10
20
30
40
50

4 2 0 2 4 4
2
0

2
4

20
40
60
80

4 2 0 2 4

4

2

0

2

4

4 2 0 2 4

4

2

0

2

4

>>> from leap_ec.real_rep.problems import TranslatedProblem, RastriginProblem,␣
→˓plot_2d_problem

>>> original_problem = RastriginProblem()
>>> bounds = RastriginProblem.bounds # Contains traditional bounds
>>> translated_problem = TranslatedProblem.random(original_problem, bounds, 2)

>>> plot_2d_problem(translated_problem, kind='contour', xlim=bounds,␣
→˓ylim=bounds)
<matplotlib.contour...>

from leap_ec.real_rep.problems import TranslatedProblem, RastriginProblem, plot_
→˓2d_problem

original_problem = RastriginProblem()
bounds = RastriginProblem.bounds # Contains traditional bounds
translated_problem = TranslatedProblem.random(original_problem, bounds, 2)

plot_2d_problem(translated_problem, kind='contour', xlim=bounds, ylim=bounds)

class leap_ec.real_rep.problems.WeierstrassProblem(kmax=20, a=0.5, b=3, maximize=False)
Bases: ScalarProblem

The Weierstrass function is famous for being the first discovered example of a function that is continuous, but

226 Chapter 10. leap_ec package

LEAP: Library for Evolutionary Algorithms in Python Documentation, Release v0.9dev

4 2 0 2 4

4

2

0

2

4

10.1. Subpackages 227

LEAP: Library for Evolutionary Algorithms in Python Documentation, Release v0.9dev

not differentiable. Built by adding the terms of a Fourier series, it has a jagged, self-similar structure:

𝑓(x) =

𝑑∑︁
𝑖=1

[︃
𝑘𝑚𝑎𝑥∑︁
𝑘=0

𝑎𝑘 cos
(︀
2𝜋𝑏𝑘(𝑥𝑖 + 0.5)

)︀
− 𝑛

𝑘𝑚𝑎𝑥∑︁
𝑘=0

𝑎𝑘 cos(𝜋𝑏𝑘)

]︃
When used in optimization benchmarks, it’s typical to carry out the Fourier sum to kmax=20 terms.

Parameters
• kmax (int) – number of terms to carry the Fourier sum out to

• a (float) – amplitude parameter of the cosine terms

• b (float) – wavenumber (frequency) parameter of the cosine terms

• maximize (bool) – the function is maximized if True, else minimized.

from leap_ec.real_rep.problems import WeierstrassProblem, plot_2d_problem
bounds = WeierstrassProblem.bounds # Contains traditional bounds
plot_2d_problem(WeierstrassProblem(), xlim=bounds, ylim=bounds, granularity=0.01)

0.4
0.2

0.0
0.2

0.4
0.4

0.2
0.0

0.2
0.4

0
1
2
3
4
5
6
7

bounds = [-0.5, 0.5]

evaluate(phenome)
Computes the function value from a real-valued phenome.

Parameters
phenome – real-valued vector to be evaluated

228 Chapter 10. leap_ec package

LEAP: Library for Evolutionary Algorithms in Python Documentation, Release v0.9dev

Returns
its fitness.

leap_ec.real_rep.problems.plot_2d_contour(fun, xlim, ylim, granularity, ax=None, title=None, pad=None)
Convenience method for plotting contours for a function that accepts 2-D real-valued inputs and produces a 1-D
scalar output.

Parameters
• fun (function) – The function to plot.

• xlim ((float, float)) – Bounds of the horizontal axes.

• ylim ((float, float)) – Bounds of the vertical axis.

• ax (Axes) – Matplotlib axes to plot to (if None, a new figure will be created).

• granularity (float) – Spacing of the grid to sample points along.

• pad – An array of extra gene values, used to fill in the hidden dimensions with contants while
drawing fitness contours.

The difference between this and plot_2d_problem() is that this takes a raw function (instead of a Problem
object).

import numpy as np
from scipy import linalg

from leap_ec.real_rep.problems import plot_2d_contour

def sinc_hd(phenome):
r = linalg.norm(phenome)
return np.sin(r)/r

plot_2d_contour(sinc_hd, xlim=(-10, 10), ylim=(-10, 10), granularity=0.2)

leap_ec.real_rep.problems.plot_2d_function(fun, xlim, ylim, granularity=0.1, ax=None, title=None,
pad=None, **kwargs)

Convenience method for plotting a function that accepts 2-D real-valued imputs and produces a 1-D scalar output.

Parameters
• fun (function) – The function to plot.

• xlim ((float, float)) – Bounds of the horizontal axes.

• ylim ((float, float)) – Bounds of the vertical axis.

• ax (Axes) – Matplotlib axes to plot to (if None, a new figure will be created).

• granularity (float) – Spacing of the grid to sample points along.

• pad – An array of extra gene values, used to fill in the hidden dimensions with contants while
drawing fitness contours.

• kwargs – additional keyword arguments to pass along to plot_surface() or contour()

The difference between this and plot_2d_problem() is that this takes a raw function (instead of a Problem
object).

10.1. Subpackages 229

LEAP: Library for Evolutionary Algorithms in Python Documentation, Release v0.9dev

10.0 7.5 5.0 2.5 0.0 2.5 5.0 7.5
10.0

7.5

5.0

2.5

0.0

2.5

5.0

7.5

230 Chapter 10. leap_ec package

LEAP: Library for Evolutionary Algorithms in Python Documentation, Release v0.9dev

import numpy as np
from scipy import linalg

from leap_ec.real_rep.problems import plot_2d_function

def sinc_hd(phenome):
r = linalg.norm(phenome)
return np.sin(r)/r

plot_2d_function(sinc_hd, xlim=(-10, 10), ylim=(-10, 10), granularity=0.2)

10
5

0
5

10 10
5

0
5

10

0.2
0.0
0.2
0.4
0.6
0.8
1.0

leap_ec.real_rep.problems.plot_2d_problem(problem, xlim=None, ylim=None, kind='surface', ax=None,
granularity=None, title=None, pad=None, **kwargs)

Convenience function for plotting a Problem that accepts 2-D real-valued phenomes and produces a 1-D scalar
fitness output.

Parameters
• fun (Problem) – The Problem to plot.

• xlim ((float, float)) – Bounds of the horizontal axes. If None, uses problem.bounds.

• ylim ((float, float)) – Bounds of the vertical axis. If None, uses problem.bounds.

• kind (str) – The kind of plot to create: ‘surface’ or ‘contour’

10.1. Subpackages 231

LEAP: Library for Evolutionary Algorithms in Python Documentation, Release v0.9dev

• pad – An array of extra gene values, used to fill in the hidden dimensions with contants while
drawing fitness contours.

• ax (Axes) – Matplotlib axes to plot to (if None, a new figure will be created).

• granularity (float) – Spacing of the grid to sample points along. If none is given, then
the granularity will default to 1/50th of the range of the function’s bounds attribute.

• kwargs – additional keyword arguments to pass along to plot_surface()

The difference between this and plot_2d_function() is that this takes a Problem object (instead of a raw
function).

If no axes are specified, a new figure is created for the plot:

from leap_ec.real_rep.problems import CosineFamilyProblem, plot_2d_problem
problem = CosineFamilyProblem(alpha=1.0, global_optima_counts=[2, 2], local_optima_
→˓counts=[2, 2])
plot_2d_problem(problem, xlim=(0, 1), ylim=(0, 1), granularity=0.025);

0.0
0.2

0.4
0.6

0.8
1.0 0.0

0.2
0.4

0.6
0.8

1.0
1.0
0.8
0.6
0.4
0.2

0.0
0.2
0.4

You can also specify axes explicitly (ex. by using ax=plt.gca(). When plotting surfaces, you must configure your
axes to use projection=’3d’. Contour plots don’t need 3D axes:

from matplotlib import pyplot as plt
from leap_ec.real_rep.problems import RastriginProblem, plot_2d_problem

(continues on next page)

232 Chapter 10. leap_ec package

LEAP: Library for Evolutionary Algorithms in Python Documentation, Release v0.9dev

(continued from previous page)

fig = plt.figure(figsize=(12, 4))
bounds=RastriginProblem.bounds # Contains default bounds

plt.subplot(121, projection='3d')
plot_2d_problem(RastriginProblem(), ax=plt.gca(), xlim=bounds, ylim=bounds)

plt.subplot(122)
plot_2d_problem(RastriginProblem(), ax=plt.gca(), kind='contour', xlim=bounds,␣
→˓ylim=bounds)

4 2 0 2 4
4

2
0

2
4

0
10
20
30
40
50

4 2 0 2 4

4

2

0

2

4

leap_ec.real_rep.problems.random(size=None)
Return random floats in the half-open interval [0.0, 1.0). Alias for random_sample to ease forward-porting to
the new random API.

leap_ec.real_rep.problems.random_orthonormal_matrix(dimensions: int)
Generate a random orthornomal matrix using the Gramm-Schmidt process.

Orthonormal matrices represent rotations (and flips) of a space.

The defining property of an orthonormal matrix is that its transpose is its inverse:

>>> Q = random_orthonormal_matrix(10)
>>> np.allclose(Q.dot(Q.T), np.identity(10))
True

Module contents

10.1.9 leap_ec.segmented_rep package

Submodules

leap_ec.segmented_rep.decoders module

Used to decode segments

class leap_ec.segmented_rep.decoders.SegmentedDecoder(segment_decoder)
Bases: Decoder

For decoding LEAP segmented representations

10.1. Subpackages 233

LEAP: Library for Evolutionary Algorithms in Python Documentation, Release v0.9dev

>>> from leap_ec.binary_rep.decoders import BinaryToIntDecoder

This example presumes that each segment has five bits, the first to map to an integer and the remaining three to
a different integer.

>>> import numpy as np
>>> decoder = SegmentedDecoder(BinaryToIntDecoder(2,3))
>>> genome = np.array([[1, 0, 1, 0, 1],
... [0, 0, 1, 1, 1],
... [1, 0, 0, 0, 1]])
>>> vals = decoder.decode(genome)
>>> assert np.all(vals == np.array([[2, 5], [0, 7], [2, 1]]))

decode(genome, *args, **kwargs)

For decoding genome which is a list of lists, or a segmented representation.

Parameters
• genome (will be a list of segments (or lists)) – for a given individual

• args (list) – optional args

• kwargs (dict) – optional keyword args

Returns
a list of list of values decoded from genome

Return type
list

leap_ec.segmented_rep.initializers module

Used to initialize segments

leap_ec.segmented_rep.initializers.create_segmented_sequence(length, seq_initializer)
Create a segmented test_sequence

A segment is a list of lists. seq_initializer is used to create length individual segments, which allows for the using
any of the pre-supplied initializers for a regular genomic test_sequence, or for making your own.

length denotes how many segments to generate. If it’s an integer, then we will create length segments. However,
if it’s a function that draws from a random distribution that returns an int, we will, instead, use that to calculate
the number of segments to generate.

>>> from leap_ec.binary_rep.initializers import create_binary_sequence
>>> segmented_initializer = create_segmented_sequence(3, create_binary_sequence(3))
>>> segments = segmented_initializer()
>>> assert len(segments) == 3

Parameters
• length (int or Callable) – How many segments?

• seq_initializer (Callable) – initializer for creating individual sequences

Returns
function that returns a list of segmented

234 Chapter 10. leap_ec package

LEAP: Library for Evolutionary Algorithms in Python Documentation, Release v0.9dev

Return type
Callable

leap_ec.segmented_rep.ops module

Segmented representation specific pipeline operators.

leap_ec.segmented_rep.ops.add_segment(next_individual: Iterator = '__no__default__', seq_initializer:
Callable = '__no__default__', probability: float =
'__no__default__', append: bool = False)→ Iterator

Possibly add a segment to the given individual

New segments can be always appended, or randomly inserted within the individual’s genome.

TODO add a parameter for accepting a function that will yield a distribution for the number of segments to be
randomly inserted.

>>> from leap_ec.individual import Individual
>>> from leap_ec.binary_rep.initializers import create_binary_sequence
>>> import numpy as np
>>> original = Individual([np.array([0, 0]), np.array([1, 1])])
>>> mutated = next(add_segment(iter([original]),
... seq_initializer=create_binary_sequence(2),
... probability=1.0))

Parameters
• next_individual – to possibly add a segment

• seq_initializer – callable for initializing any new segments

• probability – likelihood of adding a segment

• append – if True, always append any new segments

Returns
yielded individual with a possible new segment

leap_ec.segmented_rep.ops.apply_mutation(next_individual: Iterator = '__no__default__', mutator:
Callable[[list, float], list] = '__no__default__')→ Iterator

This expects next_individual to have a segmented representation; i.e., a test_sequence of sequences. mutator
will be applied separately to each sub-test_sequence.

>>> from leap_ec.binary_rep.ops import genome_mutate_bitflip
>>> mutation_op = apply_mutation(
... mutator=genome_mutate_bitflip(
... expected_num_mutations=0.5
...))
>>> import numpy as np

>>> from leap_ec.individual import Individual
>>> original = Individual(np.array([[0, 0], [1, 1]]))
>>> mutated = next(mutation_op(iter([original])))

Parameters

10.1. Subpackages 235

LEAP: Library for Evolutionary Algorithms in Python Documentation, Release v0.9dev

• next_individual – to possibly mutate

• mutator – function to be applied to each segment in the individual’s genome; first argument
is a segment, the second the expected probability of mutating each segment element.

Returns
yielded mutated individual

leap_ec.segmented_rep.ops.copy_segment(next_individual: Iterator = '__no__default__', probability: float =
'__no__default__', append: bool = False)→ Iterator

with a given probability, randomly select and copy a segment

>>> from leap_ec.individual import Individual
>>> import numpy as np
>>> original = Individual([np.array([0, 0])])
>>> mutated = next(copy_segment(iter([original]), probability=1.0))
>>> assert np.all(mutated.genome[0] == [0, 0]) and np.all(mutated.
→˓genome[1] == [0, 0])

param next_individual
to have a segment possibly removed

param probability
likelihood of doing this

param append
if True, always append any new segments

returns
the next individual

leap_ec.segmented_rep.ops.remove_segment(next_individual: Iterator = '__no__default__', probability:
float = '__no__default__')→ Iterator

for some chance, remove a segment

Nothing happens if the individual has a single segment; i.e., there is no chance for an empty individual
to be returned.

>>> from leap_ec.individual import Individual
>>> import numpy as np
>>> original = Individual([np.array([0, 0]), np.array([1, 1])])
>>> mutated = next(remove_segment(iter([original]), probability=1.0))
>>> assert np.all(mutated.genome[0] == [0, 0]) or np.all(mutated.
→˓genome[0] == [1, 1])

param next_individual
to have a segment possibly removed

param probability
likelihood of removing a segment

returns
the next individual

leap_ec.segmented_rep.ops.segmented_mutate(next_individual: Iterator = '__no__default__',
mutator_functions: list = '__no__default__')

236 Chapter 10. leap_ec package

LEAP: Library for Evolutionary Algorithms in Python Documentation, Release v0.9dev

A mutation operator that applies a different mutation operator to each segment of a segmented genome.

Module contents

10.2 Submodules

10.3 leap_ec.algorithm module

Provides convenient monolithic functions that wrap a lot of common function- ality.

• generational_ea() for a typical generational model

• multi_population_ea() for invoking an EA using sub-populations

• random_search() for a more naive strategy

leap_ec.algorithm.generational_ea(max_generations: int, pop_size: int, problem, representation, pipeline,
stop=<function <lambda>>, init_evaluate=<bound method
Individual.evaluate_population of <class
'leap_ec.individual.Individual'>>, k_elites: int = 1, start_generation:
int = 0, context={'leap': {'distrib': {'non_viable': 0}}})

This function provides an evolutionary algorithm with a generational population model.

When called this initializes and evaluates a population of size pop_size using the init_evaluate function and then
pipes it through an operator pipeline (i.e. a list of operators) to obtain offspring. Wash, rinse, repeat.

The algorithm is provided here at the “metaheuristic” level: in order to apply it to a particular problem, you
must parameterize it with implementations of its various components. You must decide the population size, how
individuals are represented and initialized, the pipeline of reproductive operators, etc. A metaheuristic template
of this kind can be used to implement genetic algorithms, genetic programming, certain evolution strategies, and
all manner of other (novel) algorithms by passing in appropriate components as parameters.

Parameters
• max_generations (int) – The max number of generations to run the algorithm for. Can

pass in float(‘Inf’) to run forever or until the stop condition is reached.

• pop_size (int) – Size of the initial population

• stop (int) – A function that accepts a population and returns True iff it’s time to stop evolv-
ing.

• problem (Problem) – the Problem that should be used to evaluate individuals’ fitness

• representation – How the problem is represented in individuals

• pipeline (list) – a list of operators that are applied (in order) to create the offspring
population at each generation

• init_evaluate – a function used to evaluate the initial population, before the main pipeline
is run. The default of Individual.evaluate_population is suitable for many cases, but you may
wish to pass a different operator in for distributed evaluation or other purposes.

• k_elites – keep k elites

• start_generation – index of the first generation to count from (defaults to 0). You might
want to change this, for example, in experiments that involve stopping and restarting an al-
gorithm.

10.2. Submodules 237

LEAP: Library for Evolutionary Algorithms in Python Documentation, Release v0.9dev

Returns
the final population

The intent behind this kind of EA interface is to allow the complete configuration of a basic evolutionary algo-
rithm to be defined in a clean and readable way. If you define most of the components in-line when passing them
to the named arguments, then the complete configuration of an algorithmic experiment forms one concise code
block. Here’s what a basic (mu, lambda)-style EA looks like (that is, an EA that throws away the parents at each
generation in favor of their offspring):

>>> from leap_ec import Individual, Representation
>>> from leap_ec.algorithm import generational_ea, stop_at_generation
>>> from leap_ec.binary_rep.problems import MaxOnes
>>> from leap_ec.binary_rep.initializers import create_binary_sequence
>>> from leap_ec.binary_rep.ops import mutate_bitflip
>>> import leap_ec.ops as ops
>>> pop_size = 5
>>> final_pop = generational_ea(max_generations=100, pop_size=pop_size,
...
... problem=MaxOnes(), # Solve a MaxOnes Boolean␣
→˓optimization problem
...
... representation=Representation(
... initialize=create_binary_sequence(length=10) #␣
→˓Initial genomes are random binary sequences
...),
...
... # The operator pipeline
... pipeline=[
... ops.tournament_selection, # Select␣
→˓parents via tournament selection
... ops.clone, # Copy them (just␣
→˓to be safe)
... mutate_bitflip(expected_num_mutations=1), # Basic␣
→˓mutation with a 1/L mutation rate
... ops.UniformCrossover(p_swap=0.4), # Crossover with a␣
→˓40% chance of swapping each gene
... ops.evaluate, # Evaluate fitness
... ops.pool(size=pop_size) # Collect␣
→˓offspring into a new population
...])

The algorithm runs immediately and returns the final population:

>>> print(*final_pop, sep='\n')
Individual<...> ...
Individual<...> ...
Individual<...> ...
...
Individual<...> ...

You can get the best individual by using max (since comparison on individuals is based on the Problem associated
with them, this will return the best individaul even on minimization problems):

>>> max(final_pop)
Individual<...>...

238 Chapter 10. leap_ec package

LEAP: Library for Evolutionary Algorithms in Python Documentation, Release v0.9dev

leap_ec.algorithm.multi_population_ea(max_generations, num_populations, pop_size, problem,
representation, shared_pipeline, subpop_pipelines=None,
stop=<function <lambda>>, init_evaluate=<bound method
Individual.evaluate_population of <class
'leap_ec.individual.Individual'>>, context={'leap': {'distrib':
{'non_viable': 0}}})

An EA that maintains multiple (interacting) subpopulations, i.e. for implementing island models.

This effectively executes several EAs concurrently that share the same generation counter, and which share the
same representation (Individual, Decoder) and objective function (Problem), and which share all or part of
the same operator pipeline.

Parameters
• max_generations (int) – The max number of generations to run the algorithm for. Can

pass in float(‘Inf’) to run forever or until the stop condition is reached.

• num_populations (int) – The number of separate populations to maintain.

• pop_size (int) – Size of each initial subpopulation

• stop (int) – A function that accepts a list of populations and returns True iff it’s time to
stop evolving.

• problem (Problem) – the Problem that should be used to evaluate individuals’ fitness

• representation – the Representation that governs the creation and decoding of individu-
als. If a list of Representation objects is given, then different representations will be used for
different subpopulations; else the same representation will be used for all subpopulations.

• shared_pipeline (list) – a list of operators that every population will use to create the
offspring population at each generation

• subpop_pipelines (list) – a list of population-specific operator lists, the ith of which
will only be applied to the ith population (after the shared_pipeline). Ignored if None.

• init_evaluate – a function used to evaluate the initial population, before the main pipeline
is run. The default of Individual.evaluate_population is suitable for many cases, but you may
wish to pass a different operator in for distributed evaluation or other purposes.

Returns
a list of lists of each of the subpopulations.

To turn a multi-population EA into an island model, use the leap_ec.ops.migrate() operator in the shared
pipeline. This operator takes a NetworkX graph describing the topology of connections between islands as input.

For example, here’s how we might define a fully connected 4-island model that solves a leap_ec.real_rep.
problems.SchwefelProblem using a real-vector representation:

>>> import networkx as nx
>>> from leap_ec.algorithm import multi_population_ea
>>> from leap_ec import ops
>>> from leap_ec.real_rep.ops import mutate_gaussian
>>> from leap_ec.real_rep import problems
>>> from leap_ec.decoder import IdentityDecoder
>>> from leap_ec.representation import Representation
>>> from leap_ec.real_rep.initializers import create_real_vector
>>>
>>> topology = nx.complete_graph(4)
>>> nx.draw_networkx(topology, with_labels=True)

(continues on next page)

10.3. leap_ec.algorithm module 239

LEAP: Library for Evolutionary Algorithms in Python Documentation, Release v0.9dev

(continued from previous page)

>>> problem = problems.SchwefelProblem(maximize=False)
...
>>> l = 2 # Length of the genome
>>> pop_size = 10
>>> pops = multi_population_ea(max_generations=10,
... num_populations=topology.number_of_nodes(),
... pop_size=pop_size,
...
... problem=problem,
...
... representation=Representation(
... individual_cls=Individual,
... decoder=IdentityDecoder(),
... initialize=create_real_vector(bounds=[problem.
→˓bounds] * l)
...),
...
... shared_pipeline=[
... ops.tournament_selection,
... ops.clone,
... mutate_gaussian(std=30,
... expected_num_mutations='isotropic
→˓',
... bounds=problem.bounds),
... ops.evaluate,
... ops.pool(size=pop_size),
... ops.migrate(topology=topology,
... emigrant_selector=ops.tournament_
→˓selection,
... replacement_selector=ops.random_
→˓selection,
... migration_gap=5)
...])
>>> pops
[[Individual<...>(...), ..., Individual<...>(...)], ..., [Individual<...>(...), ...,
→˓ Individual<...>(...)]]

We can now run the algorithm by pulling output from its generator, which gives us the best individual in each
population at each generation:

While each population is executing, multi_population_ea writes the index of the current subpopulation to con-
text[‘leap’][‘subpopulation’]. That way shared operators (such as leap.ops.migrate()) have the option of
accessing the share context to learn which subpopulation they are currently working with.

TODO find a way to use Dask to parallelize populations, likely by having a Dask worker for each sub-poplulation.

leap_ec.algorithm.random_search(evaluations, problem, representation, pipeline, context={'leap': {'distrib':
{'non_viable': 0}}})

This function performs random search of a solution space using the given representation and problem.

Random search is often used as a control in evolutionary algorithm experiments: if your pet algorithm can’t
perform better than random search, then it’s a sign that you’ve barked up the wrong tree!

This implementation also allows you to pass in an operator pipeline, which will be applied to each individual.
The pipeline must have the following types of operators:

240 Chapter 10. leap_ec package

LEAP: Library for Evolutionary Algorithms in Python Documentation, Release v0.9dev

• a selection operator, probably cyclic_selection since there will be only
one individual from which to choose

• clone operator to ensure we don’t overwrite the previous individual

• a pertubation operator, likely a simple mutation pipeline operator

• evaluate operator so we know where the new individual is in the space

• pool(size=1) to act as a pipeline sink to pull the new individuals through

Parameters
• evaluations – how many evaluations to perform

• problem – the Problem instance to use for evaluating individuals

• representation – the Representation describing individuals

• pipeline – reproductive operator pipeline

• context – optional context for storing state as algorithm progresses

Returns
the series of individuals that describe a random walk

>>> from leap_ec.binary_rep.problems import MaxOnes
>>> from leap_ec.binary_rep.initializers import create_binary_sequence
>>> from leap_ec.binary_rep.ops import mutate_bitflip
>>> from leap_ec.decoder import IdentityDecoder
>>> from leap_ec.representation import Representation
>>> from leap_ec.individual import Individual
>>> from leap_ec.ops import evaluate, clone, cyclic_selection, pool
>>> result = random_search(evaluations=5,
... problem=MaxOnes(), # Solve a MaxOnes Boolean␣
→˓optimization problem
...
... representation=Representation(
... individual_cls=Individual, # Use the standard␣
→˓Individual as the prototype for the population
... decoder=IdentityDecoder(), # Genotype and phenotype␣
→˓are the same for this task
... initialize=create_binary_sequence(length=3) # Initial␣
→˓genomes are random binary sequences
...),
... pipeline=[cyclic_selection,
... clone,
... mutate_bitflip(expected_num_mutations=3),
... evaluate,
... pool(size=1)])
>>> assert(len(result) == 5)

The algorithm outputs a list containing all the generated individuals.

leap_ec.algorithm.stop_at_generation(max_generation: int, context={'leap': {'distrib': {'non_viable':
0}}})

A stopping criterion function that checks the ‘generation’ count in the context object and returns True iff it is >=
max_generation.

10.3. leap_ec.algorithm module 241

LEAP: Library for Evolutionary Algorithms in Python Documentation, Release v0.9dev

The resulting function takes a population argument, which is ignored.

For example:

>>> from leap_ec import context
>>> stop = stop_at_generation(100)

If we set the generation field in the context object (this value will typically be updated by the algorithm as it runs)
like so:

>>> context['leap']['generation'] = 15

Then we don’t stop yet:

>>> stop(population=[])
False

We do stop at the 100th generation:

>>> context['leap']['generation'] = 100
>>> stop([])
True

10.4 leap_ec.data module

A module for synthetic data that we use in test and examples.

10.5 leap_ec.decoder module

Defines the Decoder base class.

Decoders are used to translate from genotypic to phenotypic space. E.g., binary strings may have to be decoded into
corresponding integers or real values meaningful to a Problem.

class leap_ec.decoder.Decoder

Bases: ABC

Decoders in LEAP implement how solutions to a problem are represented.
Specifically, a Decoder converts an Individual’s genotype (which is a format that can easily be manipu-
lated by mutation and recombination operators) into a phenotype (which is a format that can be fed directly
into a Problem object to obtain a fitness value).

Genotypes and phenotypes can be of arbitrary type, from a simple list of numbers to a complex data structure.
Choosing a good genotypic representation and genotype-to-phenotype mapping for a given problem domain is a
critical part of evolutionary algorithm design: the Decoder object that an algorithm uses can have a big impact
on the effectiveness of your metaheuristics.

In LEAP, a Decoder is typically used by Individual as an intermediate step in calculating its own fitness.

For example, say that we want to use a binary-represented Individual to solve a real-valued optimization
problem, such as SchwefelProblem. Here, the genotype is a vector of binary values, whereas the phenotype is
its corresponding float vector.

We can use a BinaryToIntDecoder to express this mapping. And when we initialize an individual, we give it
all three pieces of this information:

242 Chapter 10. leap_ec package

LEAP: Library for Evolutionary Algorithms in Python Documentation, Release v0.9dev

>>> from leap_ec.binary_rep.decoders import BinaryToRealDecoder
>>> from leap_ec.individual import Individual
>>> from leap_ec.real_rep.problems import SchwefelProblem
>>> import numpy as np
>>> genome = np.array([0, 1, 1, 0, 1, 0, 1, 1])
>>> decoder = BinaryToRealDecoder((4, -5.12, 5.12), (4, -5.12, 5.12)) # Every 4␣
→˓bits map to a float on (-5.12, 5.12)
>>> ind = Individual(genome, decoder=decoder, problem=SchwefelProblem())

Now we can decode the individual to examine its phenotype:

>>> ind.decode()
array([-1.024 , 2.38933333])

This call is just a wrapper for the Decoder, which has the same output:

>>> decoder.decode(genome)
array([-1.024 , 2.38933333])

But now Individual also has everything it needs to evaluate its own fitness:

>>> ind.evaluate()
836.4453949...

Calling evaluate() also has the side effect of setting the fitness attribute:

>>> ind.fitness
836.4453949...

abstract decode(genome, *args, **kwargs)

Parameters
genome – a genome you wish to convert

Returns
the phenotype associated with that genome

class leap_ec.decoder.IdentityDecoder

Bases: Decoder

A decoder that maps a genome to itself. This acts as a ‘direct’ or ‘phenotypic’ encoding: Use this when your
genotype and phenotype are the same thing.

decode(genome, *args, **kwargs)

Returns
the input genome.

For example:

>>> import numpy as np
>>> d = IdentityDecoder()
>>> d.decode(np.array([0.5, 0.6, 0.7]))
array([0.5, 0.6, 0.7])

10.5. leap_ec.decoder module 243

LEAP: Library for Evolutionary Algorithms in Python Documentation, Release v0.9dev

10.6 leap_ec.distrib module

10.7 leap_ec.global_vars module

This defines a global context that is a dictionary of dictionaries. The intent is for certain operators and functions to add
to and modify this context. Third party operators and functions will just add a new top-level dedicated key.

context[‘leap’] is for storing general LEAP running state, such as current generation.

context[‘leap’][‘distrib’] is for storing leap.distrib running state

context[‘leap’][‘distrib’][‘non_viable’] accumulates counts of non-viable individuals during distrib.eval_pool() and
distrib.async_eval_pool() runs.

10.8 leap_ec.individual module

Defines Individual

class leap_ec.individual.Individual(genome, decoder=IdentityDecoder(), problem=None)
Bases: object

Represents a single solution to a Problem.

We represent an Individual by a genome and a fitness. Individual also maintains a reference to the Problem it will
be evaluated on, and an decoder, which defines how genomes are converted into phenomes for fitness evaluation.

clone()

Create a ‘clone’ of this Individual, copying the genome, but not fitness.

The fitness of the clone is set to None. A new UUID is generated and assigned to sefl.uuid. The parents set
is updated to include the UUID of the parent. A shallow copy of the parent is made, too, so that ancillary
state is also copied.

A deep copy of the genome will be created, so if your Individual has a custom genome type, it’s important
that it implements the __deepcopy__() method.

>>> from leap_ec.binary_rep.problems import MaxOnes
>>> from leap_ec.decoder import IdentityDecoder
>>> import numpy as np
>>> genome = np.array([0, 1, 1, 0])
>>> ind = Individual(genome, IdentityDecoder(), MaxOnes())
>>> ind_copy = ind.clone()
>>> ind_copy.genome == ind.genome
array([True, True, True, True])
>>> ind_copy.problem == ind.problem
True
>>> ind_copy.decoder == ind.decoder
True

classmethod create_population(n, initialize, decoder, problem)

A convenience method for initializing a population of the appropriate subtype.

Parameters
• n – The size of the population to generate

244 Chapter 10. leap_ec package

LEAP: Library for Evolutionary Algorithms in Python Documentation, Release v0.9dev

• initialize – A function f(m) that initializes a genome

• decoder – The decoder to attach individuals to

• problem – The problem to attach individuals to

Returns
A list of n individuals of this class’s (or subclass’s) type

decode(*args, **kwargs)
Determine the indivdual’s phenome.

This is done by passing the genome self.decoder.

The result is both returned and saved to self.phenome.

Returns
the decoded value for this individual

evaluate()

determine this individual’s fitness

This is done by outsourcing the fitness evaluation to the associated Problem object since it “knows” what
is good or bad for a given phenome.

See also
ScalarProblem.worse_than

Returns
the calculated fitness

evaluate_imp()

This is the evaluate ‘implementation’ called by self.evaluate(). It’s intended to be optionally over-ridden by
sub-classes to give an opportunity to pass in ancillary data to the evaluate process either by tailoring the
problem interface or that of the given decoder.

classmethod evaluate_population(population)
Convenience function for bulk serial evaluation of a given population

Parameters
population – to be evaluated

Returns
evaluated population

property phenome

If the phenome has not yet been decoded, do so.

class leap_ec.individual.RobustIndividual(genome, decoder=IdentityDecoder(), problem=None)
Bases: Individual

This adds exception handling for evaluations

After evaluation self.is_viable is set to True if all went well. However, if an exception is thrown during evaluation,
the following happens:

• self.is_viable is set to False

• self.fitness is set to math.nan

• self.exception is assigned the exception

10.8. leap_ec.individual module 245

LEAP: Library for Evolutionary Algorithms in Python Documentation, Release v0.9dev

evaluate()

determine this individual’s fitness

Note that if an exception is thrown during evaluation, the fitness is set to NaN and self.is_viable to False;
also, the returned exception is assigned to self.exception for possible later inspection. If the individual was
successfully evaluated, self.is_viable is set to true. NaN fitness values will figure into comparing individuals
in that NaN will always be considered worse than non-NaN fitness values.

Returns
the calculated fitness

class leap_ec.individual.WholeEvaluatedIndividual(genome, decoder=IdentityDecoder(),
problem=None)

Bases: Individual

An Individual that, when evaluated, passes its whole self to the evaluation function, rather than just its phenome.

In most applications, fitness evaluation requires only phenome information, so that is all that we pass from the
Individual to the Problem. This is important, because during distributed evaluation, we want to pass as little
information as possible across nodes.

WholeEvaluatedIndividual is used for special cases where fitness evaluation needs access to more information
about an individual than its phenome. This is strange in most cases and should be avoided, but can make certain
algorithms more elegant (ex. it’s helpful when interpreting cooperative coevolution as an island model).

This can dramatically slow down distributed evaluation (i.e. with dask) in some applications because the entire
individual will be sent over a TCP/IP connection instead of just the phenome, so use with caution.

evaluate_imp()

This is the evaluate ‘implementation’ called by self.evaluate(). It’s intended to be optionally over-ridden by
sub-classes to give an opportunity to pass in ancillary data to the evaluate process either by tailoring the
problem interface or that of the given decoder.

10.9 leap_ec.multiobjective module

10.10 leap_ec.ops module

Fundamental evolutionary operators.

This module provides many of the most important functions that we string together to create EAs out of operator
pipelines. You’ll find many traditional selection and reproduction strategies here, as well as components for classic
algorithms like island models and cooperative coevolution.

Representation-specific operators tend to reside within their own subpackages, rather than here. See for example
leap_ec.real_rep.ops and leap_ec.binary_rep.ops.

class leap_ec.ops.CooperativeEvaluate(num_trials: int, collaborator_selector, log_stream=None,
combine=<function concat_combine>, context={'leap': {'distrib':
{'non_viable': 0}}})

Bases: Operator

A simple, non-parallel implementation of cooperative coevolutionary fitness evaluation.

Parameters
• num_trials (int) – the number of combined solutions & fitness estimates to collect when

computing a partial solution’s fitness.

246 Chapter 10. leap_ec package

LEAP: Library for Evolutionary Algorithms in Python Documentation, Release v0.9dev

• collaborator_selector – a selection operator that we use to choose individuals from the
other subpopulations to create a combined solution.

• context – the algorithm’s state context. Used to access subpopulation information.

• log_stream – optional file object to collect statistics about combined individuals to.

• combine – the function used to combine partial solutions into combined solutions.

class leap_ec.ops.Crossover(persist_children, p_xover)
Bases: Operator

abstract recombine(parent_a, parent_b)
Perform recombination between two parents to produce two new individuals.

class leap_ec.ops.NAryCrossover(num_points=2, p_xover=1.0, persist_children=False)
Bases: Crossover

Do crossover between individuals between N crossover points.

1 < n < genome length - 1

We also assume that the passed in individuals are clones of parents.

>>> from leap_ec.individual import Individual
>>> from leap_ec.ops import NAryCrossover
>>> import numpy as np

>>> genome1 = np.array([0, 0])
>>> genome2 = np.array([1, 1])
>>> first = Individual(genome1)
>>> second = Individual(genome2)
>>> pop = [first, second]
>>> select = naive_cyclic_selection(pop)

>>> op = NAryCrossover()
>>> result = op(select)

>>> new_first = next(result)
>>> new_second = next(result)

If persist_children is True and there is a child that was made by crossover but isn’t used in the first call, it will be
yielded in a future call.

>>> op = NAryCrossover(p_xover=0.0, persist_children=True)
>>>
>>> next(op(select)) is first # Create an iterator loop with op(select) and␣
→˓consume 1 individual
True
>>> next(op(select)) is second # Create a different iterator loop with op(select)
True

With persist_children set to False, the second child will not be yielded if the iterator is consumed an odd number
of times. Instead, on the next call the loop is started anew.

10.10. leap_ec.ops module 247

LEAP: Library for Evolutionary Algorithms in Python Documentation, Release v0.9dev

>>> op = NAryCrossover(p_xover=0.0, persist_children=False)
>>>
>>> next(op(select)) is first # Create an iterator loop with op(select) and␣
→˓consume 1 individual
True
>>> next(op(select)) is second # Create a different iterator loop with op(select)
False

Parameters
• num_points – how many crossing points do we use? Defaults to 2, since 2-point crossover

has been shown to be the least disruptive choice for this value.

• p – the probability that crossover is performed.

• persist_children (bool) – whether unyielded children should persist between calls. This
is useful for leap_ec.distrib.asynchronous.steady_state, where the pipeline may only produce
one individual at a time.

Returns
a pipeline operator that returns two recombined individuals (with probability p), or two unmod-
ified individuals (with probability 1 - p)

recombine(parent_a, parent_b)
Perform recombination between two parents to produce two new individuals.

class leap_ec.ops.Operator

Bases: ABC

Abstract base class that documents the interface for operators in a LEAP pipeline.

LEAP treats operators as functions of two arguments: the population, and a “context” dict that may be used in
some algorithms to maintain some global state or parameters independent of the population.

TODO The above description is outdated. –Siggy TODO Also this is for a population based operator. We also
have operators for individuals

You can inherit from this class to define operators as classes. Classes support operators that take extra arguments
at construction time (such as a mutation rate) and maintain some internal private state, and they allow certain
special patterns (such as multi-function operators).

But inheriting from this class is optional. LEAP can treat any callable object that takes two parameters as an
operator. You may define your custom operators as closures (which also allow for construction-time arguments
and internal state), as simple functions (when no additional arguments are necessary), or as curried functions (
i.e. with the help of toolz.curry(. . .).

class leap_ec.ops.UniformCrossover(p_swap: float = 0.2, p_xover: float = 1.0, persist_children=False)
Bases: Crossover

Parameterized uniform crossover iterates through two parents’ genomes and swaps each of their genes with the
given probability.

In a classic paper, De Jong and Spears showed that this operator works particularly well when the swap probability
p_swap is set to about 0.2. LEAP thus uses this value as its default.

De Jong, Kenneth A., and W. Spears. “On the virtues of parameterized uniform crossover.” Pro-
ceedings of the 4th international conference on genetic algorithms. Morgan Kaufmann Publishers,
1991.

248 Chapter 10. leap_ec package

LEAP: Library for Evolutionary Algorithms in Python Documentation, Release v0.9dev

>>> from leap_ec.individual import Individual
>>> from leap_ec.ops import UniformCrossover, naive_cyclic_selection
>>> import numpy as np

>>> genome1 = np.array([0, 0])
>>> genome2 = np.array([1, 1])
>>> first = Individual(genome1)
>>> second = Individual(genome2)
>>> pop = [first, second]
>>> select = naive_cyclic_selection(pop)
>>> op = UniformCrossover()
>>> result = op(select)
>>> new_first = next(result)
>>> new_second = next(result)

The probability can be tuned via the p_swap parameter: >>> op = UniformCrossover(p_swap=0.1) >>> result =
op(select)

If persist_children is True and there is a child that was made by crossover but isn’t used in the first call, it will be
yielded in a future call.

>>> op = UniformCrossover(p_xover=0.0, persist_children=True)
>>>
>>> next(op(select)) is first # Create an iterator loop with op(select) and␣
→˓consume 1 individual
True
>>> next(op(select)) is second # Create a different iterator loop with op(select)
True

With persist_children set to False, the second child will not be yielded if the iterator is consumed an odd number
of times. Instead, on the next call the loop is started anew.

>>> op = UniformCrossover(p_xover=0.0, persist_children=False)
>>>
>>> next(op(select)) is first # Create an iterator loop with op(select) and␣
→˓consume 1 individual
True
>>> next(op(select)) is second # Create a different iterator loop with op(select)
False

Parameters
• p_swap – how likely are we to swap each pair of genes when crossover is performed

• p_xover (float) – the probability that crossover is performed in the first place

• persist_children (bool) – whether unyielded children should persist between calls. This
is useful for leap_ec.distrib.asynchronous.steady_state, where the pipeline may only produce
one individual at a time.

Returns
a pipeline operator that returns two recombined individuals (with probability p_xover), or two
unmodified individuals (with probability 1 - p_xover)

10.10. leap_ec.ops module 249

LEAP: Library for Evolutionary Algorithms in Python Documentation, Release v0.9dev

recombine(parent_a, parent_b)
Perform recombination between two parents to produce two new individuals.

leap_ec.ops.clone(next_individual: Iterator = '__no__default__')→ Iterator
clones and returns the next individual in the pipeline

The clone’s fitness is set to None, its parents are set to the individual from which it was cloned (i.e., the parent),
and it is assigned its own UUID.

>>> from leap_ec.individual import Individual
>>> import numpy as np

Create a common decoder and problem for individuals.

>>> genome = np.array([1, 1])
>>> original = Individual(genome)

>>> cloned_generator = clone(iter([original]))

Parameters
next_individual – iterator for next individual to be cloned

Returns
copy of next_individual

leap_ec.ops.compute_expected_probability(expected_num_mutations: float, individual_genome: List)→
float

Computed the probability of mutation based on the desired average expected mutation and genome length.

The equation here is 𝑝 = 1/𝐿 *

Parameters
• expected_num_mutations – times individual is to be mutated on average
• individual_genome – genome for which to compute the probability

Returns
the corresponding probability of mutation

leap_ec.ops.compute_population_values(population: ~typing.List, offset=0, exponent: int = 1,
key=<function <lambda>>)→ ndarray

Returns a list of values where the zero-point of the population is shifted and the values are scaled by exponenti-
ation.

Parameters
• population – the population to compute values from.

• offset – the offset from zero. Specifying offset=’pop-min’ will use the population’s mini-
mum value as the new zero-point. Defaults to 0.

• exponent (int) – the power to which values are raised to. Defaults to 1.

• key – a function that computes a metric based on an Individual.

Returns
a numpy array of values that have been shifted by offset and scaled by exponent corresponding
to each individual in the population.

250 Chapter 10. leap_ec package

LEAP: Library for Evolutionary Algorithms in Python Documentation, Release v0.9dev

leap_ec.ops.concat_combine(collaborators)
Combine a list of individuals by concatenating their genomes.

You can choose whether this or some other function is used for combining collaborators by passing it into the
CooperativeEvaluate constructor.

leap_ec.ops.const_evaluate(population: List = '__no__default__', value='__no__default__')→ List
An evaluator that assigns a constant fitness to every individual.

This ignores the Problem associated with each individual for the purpose of assigning a constant fitness.

This is useful for algorithms that need to assign an arbitrary initial fitness value before using their normal eval-
uation method. Some forms of cooperative coevolution are an example.

leap_ec.ops.cyclic_selection(population: List = '__no__default__')→ Iterator
Deterministically returns individuals in order, then shuffles the test_sequence, returns the individuals in that new
order, and repeats this process.

>>> from leap_ec.individual import Individual
>>> from leap_ec.ops import cyclic_selection
>>> import numpy as np

>>> pop = [Individual(np.array([0, 0])),
... Individual(np.array([0, 1]))]

>>> cyclic_selector = cyclic_selection(pop)

Parameters
population – from which to select

Returns
the next selected individual

leap_ec.ops.elitist_survival(offspring: List = '__no__default__', parents: List = '__no__default__', k: int =
1, key=None)→ List

This allows k best parents to compete with the offspring.

>>> from leap_ec.individual import Individual
>>> from leap_ec.binary_rep.problems import MaxOnes
>>> import numpy as np

First, let’s make a “pretend” population of parents using the MaxOnes problem.

>>> pretend_parents = [Individual(np.array([0, 0, 0]), problem=MaxOnes()),
... Individual(np.array([1, 1, 1]), problem=MaxOnes())]

Then a “pretend” population of offspring. (Pretend in that we’re pretending that the offspring came
from the parents.)

>>> pretend_offspring = [Individual(np.array([0, 0, 0]), problem=MaxOnes()),
... Individual(np.array([1, 1, 0]), problem=MaxOnes()),
... Individual(np.array([1, 0, 1]), problem=MaxOnes()),
... Individual(np.array([0, 1, 1]), problem=MaxOnes()),
... Individual(np.array([0, 0, 1]), problem=MaxOnes())]

We need to evaluate them to get their fitness to sort them for elitist_survival.

10.10. leap_ec.ops module 251

LEAP: Library for Evolutionary Algorithms in Python Documentation, Release v0.9dev

>>> pretend_parents = Individual.evaluate_population(pretend_parents)
>>> pretend_offspring = Individual.evaluate_population(pretend_offspring)

This will take the best parent, which has [1,1,1], and replace the worst offspring, which has [0,0,0]
(because this is the MaxOnes problem) >>> survivors = elitist_survival(pretend_offspring, pre-
tend_parents)

>>> assert pretend_parents[1] in survivors # yep, best parent is there
>>> assert pretend_offspring[0] not in survivors # worst guy isn't

We orginally ordered 5 offspring, so that’s what we better have. >>> assert len(survivors) == 5

Please note that the literature has a number of variations of elitism and other forms of overlapping
generations. For example, this may be a good starting point:

De Jong, Kenneth A., and Jayshree Sarma. “Generation gaps revisited.” In Foundations of genetic
algorithms, vol. 2, pp. 19-28. Elsevier, 1993.

Parameters
• offspring – list of created offpring, probably from pool()

• parents – list of parents, usually the ones that offspring came from

• k – how many elites from parents to keep?

• key – optional key criteria for selecting; e.g., can be used to impose parsimony pressure

Returns
surviving population, which will be offspring with offspring replaced by any superior parent
elites

leap_ec.ops.evaluate(next_individual: Iterator = '__no__default__')→ Iterator
Evaluate and returns the next individual in the pipeline

>>> from leap_ec.individual import Individual
>>> from leap_ec.decoder import IdentityDecoder
>>> from leap_ec.binary_rep.problems import MaxOnes
>>> import numpy as np

We need to specify the decoder and problem so that evaluation is possible.

>>> genome = np.array([1, 1])
>>> ind = Individual(genome, decoder=IdentityDecoder(), problem=MaxOnes())

>>> evaluated_ind = next(evaluate(iter([ind])))

Parameters
• next_individual – iterator pointing to next individual to be evaluated

• kwargs – contains optional context state to pass down the pipeline in context dictionaries

Returns
the evaluated individual

252 Chapter 10. leap_ec package

LEAP: Library for Evolutionary Algorithms in Python Documentation, Release v0.9dev

leap_ec.ops.grouped_evaluate(population: list = '__no__default__', max_individuals_per_chunk: int =
None)→ list

Evaluate the population by sending groups of multiple individuals to a fitness function so they can be evaluated
simultaneously.

This is useful, for example, as a way to evaluate individuals in parallel on a GPU.

leap_ec.ops.insertion_selection(offspring: List = '__no__default__', parents: List = '__no__default__',
key=None)→ List

do exclusive selection between offspring and parents

This is typically used for Ken De Jong’s EV algorithm for survival selection. Each offspring is deterministically
selected and a random parent is selected; if the offspring wins, then it replaces the parent.

Note that we make a _copy_ of the parents and have the offspring compete with the parent copies so that users
can optionally preserve the original parents. You may wish to do that, for example, if you want to analyze the
composition of the original parents and the modified copy.

Parameters
• offspring – population to select from

• parents – parents that are copied and which the copies are potentially updated with better
offspring

• key – optional key for determining max() by other criteria such as for parsimony pressure

Returns
the updated parent population

leap_ec.ops.iteriter_op(f)
This decorator wraps a function with runtime type checking to ensure that it always receives an iterator as its first
argument, and that it returns an iterator.

We use this to make debugging operator pipelines easier in EAs: if you accidentally hook up, say an operator
that outputs a list to an operator that expects an iterator, we’ll throw an exception that pinpoints the issue.

Parameters
function (f) – the function to wrap

leap_ec.ops.iterlist_op(f)
This decorator wraps a function with runtime type checking to ensure that it always receives an iterator as its first
argument, and that it returns a list.

We use this to make debugging operator pipelines easier in EAs: if you accidentally hook up, say an operator
that outputs a list to an operator that expects an iterator, we’ll throw an exception that pinpoints the issue.

Parameters
function (f) – the function to wrap

leap_ec.ops.listiter_op(f)
This decorator wraps a function with runtime type checking to ensure that it always receives a list as its first
argument, and that it returns an iterator.

We use this to make debugging operator pipelines easier in EAs: if you accidentally hook up, say an operator
that outputs an iterator to an operator that expects a list, we’ll throw an exception that pinpoints the issue.

Parameters
function (f) – the function to wrap

10.10. leap_ec.ops module 253

LEAP: Library for Evolutionary Algorithms in Python Documentation, Release v0.9dev

leap_ec.ops.listlist_op(f)
This decorator wraps a function with runtime type checking to ensure that it always receives a list as its first
argument, and that it returns a list.

We use this to make debugging operator pipelines easier in EAs: if you accidentally hook up, say an operator
that outputs an iterator to an operator that expects a list, we’ll throw an exception that pinpoints the issue.

Parameters
function (f) – the function to wrap

leap_ec.ops.migrate(topology, emigrant_selector, replacement_selector, migration_gap,
customs_stamp=<function <lambda>>, metric=None, context={'leap': {'distrib':
{'non_viable': 0}}})

A migration operator for use in island models.

This operator works with multi-population algorithms, and is thus meant to used with leap_ec.algorithm.
multi_population_ea.

Specifically, it assumes that

1. the population argument passed into the returned function is a particular sub-population that we want to
process “emigration” out of and “immigration” into,

2. the context state object contains an integer field context[‘leap’][‘generation’] indicating the current gener-
ation count of the algorithm, and

3. the context also contains a integer field context[‘leap’][‘current_subpopulation’] indicating the index of
the subpopulation that is currently being processed in the overall collection of subpopulations (i.e. the one
that population belongs to).

These assumptions are essentially what leap_ec.algorithm.multi_population_ea implements.

>>> import networkx as nx
>>> from leap_ec import ops, context
>>> from leap_ec.data import test_population
>>> pop0 = test_population[:] # Shallow copy
>>> pop1 = test_population[:]

>>> op = migrate(topology=nx.complete_graph(2),
... emigrant_selector=ops.tournament_selection,
... replacement_selector=ops.random_selection,
... migration_gap=50)
>>> context['leap']['generation'] = 0
>>> context['leap']['current_subpopulation'] = 0
>>> op(pop0)
[Individual<...>(...), Individual<...>(...), Individual<...>(...), Individual<...>(.
→˓..)]

>>> context['leap']['current_subpopulation'] = 1
>>> op(pop1)
[Individual<...>(...), Individual<...>(...), Individual<...>(...), Individual<...>(.
→˓..)]

This operator is a stateful closure: it maintains an internal list of all the out-going “emigrations” that occurred
in the previous time step, so that it can process them as “immigrations” in the current time step.

Parameters
• topology – a networkx topology defining the connectivity among islands

254 Chapter 10. leap_ec package

LEAP: Library for Evolutionary Algorithms in Python Documentation, Release v0.9dev

• emigrant_selector – a selection operator for choosing individuals to leave an island

• replacement_selector – a selection operator choosing contestants that will be replaced
by an incoming immigrant if the immigrant has higher fitness

• migration_gap (int) – migration will occur regularly after every migration_gap evolu-
tionary steps

• customs_stamp – an optional function to transfrom an individual upon its arrival to a new
island. This can be used, for example, to change the individual’s decoder or problem in a
heterogeneous island model.

• metric – an optional function of the form f(generation, immigrant_individual, contes-
tant_indidivudal, success) for recording information about migration events.

• context – the context object to check for EA state, such as the current generation number,
and the ID of the subpopulation that is currently being processed.

leap_ec.ops.migration_metric(stream, header: bool = True, notes: Optional[dict] = None)
Returns a function that can be used to record migration events.

The purpose of a migration metric is to record information about migrations that occur inside a migration oper-
ator. Because these events take place inside the operator (rather than across operators), they cannot be recorded
by a LEAP pipeline probe.

In general, the interface for a migration metric function takes four parameters:

• generation: the current generation

• immigrant_ind: the individual that is attempting to migrate

• contestant_ind: the individual that has been chosen to be replaced

• success: True if the migration is successful, False otherwise

The metric included here records the fitness of both individuals and writes them (along with the generation and
success values) to a CSV. You can write your own metric if you need to record other information (such as, say,
genomes).

>>> import sys
>>> from leap_ec import Individual
>>> from leap_ec.binary_rep.problems import MaxOnes
>>> m = migration_metric(sys.stdout,
... header=True,
... notes={'run': 0, 'description': 'Test output'}
...)
run,description,generation,migrant_fitness,contestant_fitness,success

>>> ind1 = Individual(np.array([1, 1, 1]), problem=MaxOnes())
>>> f = ind1.evaluate()
>>> contestant = Individual(np.array([0, 1, 1]), problem=MaxOnes())
>>> f = contestant.evaluate()
>>> m(0, ind1, contestant, True)
0,Test output,0,3,2,True

Parameters
• stream – file object to write the CSV data to

• header (bool) – a CSV header will be written if True

10.10. leap_ec.ops module 255

LEAP: Library for Evolutionary Algorithms in Python Documentation, Release v0.9dev

• notes (dict) – a dict specifying additional constant-value columns to include in the CSV
output

leap_ec.ops.naive_cyclic_selection(population: List = '__no__default__', indices: List = None)→ Iterator
Deterministically returns individuals, and repeats the same test_sequence when exhausted.

This is “naive” because it doesn’t shuffle the population between complete tours to minimize bias.

>>> from leap_ec.individual import Individual
>>> from leap_ec.ops import naive_cyclic_selection
>>> import numpy as np

>>> pop = [Individual(np.array([0, 0])),
... Individual(np.array([0, 1]))]

>>> cyclic_selector = naive_cyclic_selection(pop)

Parameters
population – from which to select

Returns
the next selected individual

leap_ec.ops.pool(next_individual: Iterator = '__no__default__', size: int = '__no__default__')→ List
‘Sink’ for creating size individuals from preceding pipeline source.

Allows for “pooling” individuals to be processed by next pipeline operator. Typically used to collect offspring
from preceding set of selection and birth operators, but could also be used to, say, “pool” individuals to be passed
to an EDA as a training set.

>>> from leap_ec.individual import Individual
>>> from leap_ec.ops import naive_cyclic_selection
>>> import numpy as np

>>> pop = [Individual(np.array([0, 0])),
... Individual(np.array([0, 1]))]

>>> cyclic_selector = naive_cyclic_selection(pop)

>>> pool = pool(cyclic_selector, 3)

print(pool) [Individual([0, 0], None, None), Individual([0, 1], None, None), Individual([0, 0], None, None)]

Parameters
• next_individual – generator for getting the next offspring

• size – how many kids we want

Returns
population of size offspring

leap_ec.ops.proportional_selection(population: ~typing.List = '__no__default__', offset=0, exponent: int =
1, key=<function <lambda>>)→ Iterator

Returns an individual from a population in direct proportion to their fitness or another given metric.

256 Chapter 10. leap_ec package

LEAP: Library for Evolutionary Algorithms in Python Documentation, Release v0.9dev

To deal with negative fitness values use offset=’pop-min’ or set a custom offset. A ValueError is thrown if the
result of adding offset to a fitness value results in a negative number. The value of an individual is calculated as
follows

value = (fitness + offset)^exponent

Parameters
• population – the population to select from. Should be a list, not an iterator.

• offset – the offset from zero. If negative fitness values are possible and the minimum is
unknown use offest=’pop-min’ for an adaptive offset. Defaults to 0.

• exponent (int) – the power to which fitness values are raised to. This can be tuned to
increase or decrease selection pressure by creating larger or smaller differences between
fitness values in the population. Defaults to 1.

• key – a function that computes the metric used to compare individuals. Defaults to fitness.

Returns
a random individual based on the proportion of the given metric in the population.

>>> from leap_ec import Individual
>>> from leap_ec.binary_rep.problems import MaxOnes
>>> from leap_ec.ops import proportional_selection
>>> import numpy as np

>>> genome1 = np.array([0, 0, 0])
>>> genome2 = np.array([0, 0, 1])
>>> pop = [Individual(genome1, problem=MaxOnes()),
... Individual(genome2, problem=MaxOnes())]
>>> pop = Individual.evaluate_population(pop)
>>> selected = proportional_selection(pop)

leap_ec.ops.random_bernoulli_vector(shape: Union[int, Tuple], p: float = 0.5)→ ndarray
Generates a random vector of Boolean balues from a Bernoulli process—that is, from a sequence of weighted
coin flips.

We use this function throughout LEAP because its implementation was found to be much faster than, say, just
calling np.random.choice([0, 1]).

>>> from leap_ec.ops import random_bernoulli_vector
>>> random_bernoulli_vector(5, p=0.4)
array([..., ..., ..., ..., ...])

Parameters
• shape – shape of the random vector—can be an integer or a tuple.

• p – success probability of the bernoulli trials.

Returns
boolean numpy array

leap_ec.ops.random_selection(population: List = '__no__default__', indices=None)→ Iterator
return a uniformly randomly selected individual from the population

Parameters
population – from which to select

10.10. leap_ec.ops module 257

LEAP: Library for Evolutionary Algorithms in Python Documentation, Release v0.9dev

Returns
a uniformly selected individual

leap_ec.ops.sus_selection(population: ~typing.List = '__no__default__', n=None, shuffle: bool = True,
offset=0, exponent: int = 1, key=<function <lambda>>)→ Iterator

Returns an individual from a population in proportion to their fitness or another given metric using the stochastic
universal sampling algorithm.

To deal with negative fitness values use offset=’pop-min’ or set a custom offset. A ValueError is thrown if the
result of adding offset to a fitness value results in a negative number. The value of an individual is calculated as
follows

value = (fitness + offset)^exponent

Parameters
• population – the population to select from. Should be a list, not an iterator.

• n – the number of evenly spaced points to use in the algorithm. Default is None which uses
len(population).

• shuffle (bool) – if True, n points are resampled after one full pass over them. If False,
selection repeats over the same n points. Defaults to True.

• offset – the offset from zero. If negative fitness values are possible and the minimum is
unknown use offset=’pop-min’ for an adaptive offset. Defaults to 0.

• exponent (int) – the power to which fitness values are raised to. This can be tuned to
increase or decrease selection pressure by creating larger or smaller differences between
fitness values in the population. Defaults to 1.

• key – a function that computes the metric used to compare individuals. Defaults to fitness.

Returns
a random individual based on the proportion of the given metric in the population.

>>> from leap_ec import Individual
>>> from leap_ec.binary_rep.problems import MaxOnes
>>> from leap_ec.ops import sus_selection
>>> import numpy as np

>>> genome1 = np.array([0, 0, 0])
>>> genome2 = np.array([1, 1, 1])
>>> pop = [Individual(genome1, problem=MaxOnes()),
... Individual(genome2, problem=MaxOnes())]
>>> pop = Individual.evaluate_population(pop)
>>> selected = sus_selection(pop)

leap_ec.ops.tournament_selection(population: list = '__no__default__', k: int = 2, key=None, select_worst:
bool = False, indices=None)→ Iterator

Returns an operator that selects the best individual from k individuals randomly selected from the given popula-
tion.

Like other selection operators, this assumes that if one individual is “greater than” another, then it is “better
than” the other. Whether this indicates maximization or minimization isn’t handled here: the Individual class
determines the semantics of its “greater than” operator.

Parameters
• population – the population to select from. Should be a list, not an iterator.

258 Chapter 10. leap_ec package

LEAP: Library for Evolutionary Algorithms in Python Documentation, Release v0.9dev

• k (int) – number of contestants in the tournament. k=2 does binary tournament selection,
which approximates linear ranking selection in the expectation. Higher values of k yield
greedier selection strategies—k=3, for instance, is equal to quadratic ranking selection in the
expectation.

• key – an optional function that computes keys to sort over. Defaults to None, in which case
Individuals are compared directly.

• select_worst (bool) – if True, select the worst individual from the tournament instead of
the best.

• indices (list) – an optional list that will be populated with the index of the selected indi-
vidual.

Returns
the best of k individuals drawn from population

>>> from leap_ec import Individual
>>> from leap_ec.binary_rep.problems import MaxOnes
>>> from leap_ec.ops import tournament_selection
>>> import numpy as np

>>> pop = [Individual(np.array([0, 0, 0]), problem=MaxOnes()),
... Individual(np.array([0, 0, 1]), problem=MaxOnes())]
>>> pop = Individual.evaluate_population(pop)
>>> best = tournament_selection(pop)

leap_ec.ops.truncation_selection(offspring: List = '__no__default__', size: int = '__no__default__',
parents: List = None, key=None)→ List

return the size best individuals from the given population

This defaults to (mu, lambda) if parents is not given.

>>> from leap_ec.individual import Individual
>>> from leap_ec.binary_rep.problems import MaxOnes
>>> from leap_ec.ops import truncation_selection
>>> import numpy as np

>>> pop = [Individual(np.array([0, 0, 0]), problem=MaxOnes()),
... Individual(np.array([0, 0, 1]), problem=MaxOnes()),
... Individual(np.array([1, 1, 0]), problem=MaxOnes()),
... Individual(np.array([1, 1, 1]), problem=MaxOnes())]

We need to evaluate them to get their fitness to sort them for truncation.

>>> pop = Individual.evaluate_population(pop)

>>> truncated = truncation_selection(pop, 2)

TODO Do we want an optional context to over-ride the ‘parents’ parameter?

Parameters
• offspring – offspring to truncate down to a smaller population

• size – is what to resize population to

10.10. leap_ec.ops module 259

LEAP: Library for Evolutionary Algorithms in Python Documentation, Release v0.9dev

• second_population – is optional parent population to include with population for down-
sizing

Returns
truncated population

10.11 leap_ec.parsimony module

Parsimony pressure functions.

These are intended to be used as key parameters for selection operators.

Provided are Koza-style parsimony pressure and lexicographic parsimony key functions.

leap_ec.parsimony.koza_parsimony(ind='__no__default__', *, penalty='__no__default__')
Penalize fitness by genome length times a constant, in the style of Koza [Koz92].

>>> import toolz
>>> from leap_ec.individual import Individual
>>> from leap_ec.decoder import IdentityDecoder
>>> from leap_ec.binary_rep.problems import MaxOnes
>>> import leap_ec.ops as ops
>>> import numpy as np
>>> problem = MaxOnes()
>>> pop = [Individual(np.array([0, 0, 0, 1, 1, 1]), problem=problem),
... Individual(np.array([0, 0]), problem=problem),
... Individual(np.array([1, 1]), problem=problem),
... Individual(np.array([1, 1, 1]), problem=problem)]
>>> pop = Individual.evaluate_population(pop)
>>> best, = ops.truncation_selection(pop, size=1)
>>> print(best.genome, best.fitness)
[0 0 0 1 1 1] 3

>>> best, = ops.truncation_selection(pop, size=1, key=koza_parsimony(penalty=.5))
>>> print(best.genome, best.fitness)
[1 1 1] 3

𝑓𝑝(𝑥) = 𝑓(𝑥)− 𝑐𝑙(𝑥)

Where f(x) is original fitness, c is a penalty constant, and l(x) is the genome length.

Parameters
• ind – to be compared

• penalty – for denoting penalty strength

Returns
altered comparison criteria

leap_ec.parsimony.lexical_parsimony(ind)
If two fitnesses are the same, break the tie with the smallest genome

This implements Lexicographical Parsimony Pressure [LP02], which is essentially where if the fitnesses of two
individuals are close, then break the tie with the smallest genome.

260 Chapter 10. leap_ec package

LEAP: Library for Evolutionary Algorithms in Python Documentation, Release v0.9dev

>>> import toolz
>>> from leap_ec.individual import Individual
>>> from leap_ec.binary_rep.problems import MaxOnes
>>> import leap_ec.ops as ops
>>> import numpy as np
>>> problem = MaxOnes()
>>> pop = [Individual(np.array([0, 0, 0, 1, 1, 1]), problem=problem),
... Individual(np.array([0, 0]), problem=problem),
... Individual(np.array([1, 1]), problem=problem),
... Individual(np.array([1, 1, 1]), problem=problem)]
>>> pop = Individual.evaluate_population(pop)
>>> best, = ops.truncation_selection(pop, size=1)
>>> print(best.genome, best.fitness)
[0 0 0 1 1 1] 3

>>> best, = ops.truncation_selection(pop, size=1, key=lexical_parsimony)
>>> print(best.genome, best.fitness)
[1 1 1] 3

Parameters
ind – to be compared

Returns
altered comparison criteria

10.12 leap_ec.probe module

Probes are pipeline operators to instrument state that passes through the pipeline such as populations or individuals.

class leap_ec.probe.AttributesCSVProbe(attributes=(), stream=<_io.TextIOWrapper name='<stdout>'
mode='w' encoding='UTF-8'>, do_dataframe=False,
best_only=False, header=True, do_fitness=False,
do_genome=False, notes=None, extra_metrics=None, job=None,
numpy_as_list=True, context={'leap': {'distrib': {'non_viable':
0}}})

Bases: Operator

An operator that records the specified attributes for all the individuals (or just the best individual) in population
in CSV-format to the specified stream and/or to a DataFrame.

Parameters
• attributes – list of attribute names to record, as found in the individuals’ attributes field

• stream – a file object to write the CSV rows to (defaults to sys.stdout). Can be None if you
only want a DataFrame

• do_dataframe (bool) – if True, data will be collected in memory as a Pandas DataFrame,
which can be retrieved by calling the dataframe property after (or during) the algorithm run.
Defaults to False, since this can consume a lot of memory for long-running algorithms.

• best_only (bool) – if True, attributes will only be recorded for the best-fitness individual;
otherwise a row is recorded for every individual in the population

10.12. leap_ec.probe module 261

LEAP: Library for Evolutionary Algorithms in Python Documentation, Release v0.9dev

• header (bool) – if True (the default), a CSV header is printed as the first row with the
column names

• do_fitness (bool) – if True, the individuals’ fitness is included as one of the columns

• do_genomes (bool) – if True, the individuals’ genome is included as one of the columns

• notes (str) – a dict of optional constant-value columns to include in all rows (ex. to identify
and experiment or parameters)

• extra_metrics – a dict of ‘column_name’: function pairs, to compute optional extra
columns. The functions take a the population as input as a list of individuals, and their
return value is printed in the column.

• job (int) – a job ID that will be included as a constant-value column in all rows (ex. typically
an integer, indicating the ith run out of many)

• numpy_as_list (bool) – if True, numpy arrays will be first converted to a python list before
printing. This is intended for large genomes and multiobjective fitnesses, where large numpy
arrays would be split across multiple csv rows by the default formatter.

• context – the algorithm context we use to read the current generation from (so we can write
it to a column)

Individuals contain some build-in attributes (namely fitness, genome), and also a dict of additional custom at-
tributes called, well, attributes. This class allows you to log all of the above.

Most often, you will want to record only the best individual in the population at each step, and you’ll just want
to know its fitness and genome. You can do this with this class’s boolean flags. For example, here’s how you’d
record the best individual’s fitness and genome to a dataframe:

>>> from leap_ec.global_vars import context
>>> from leap_ec.data import test_population
>>> probe = AttributesCSVProbe(do_dataframe=True, best_only=True,
... do_fitness=True, do_genome=True)
>>> context['leap']['generation'] = 100
>>> probe(test_population) == test_population
True

You can retrieve the result programatically from the dataframe property:

>>> probe.dataframe
step fitness genome

0 100 4 [0, 1, 1, 1, 1]

By default, the results are also written to sys.stdout. You can pass any file object you like into the stream param-
eter.

Another common use of this task is to record custom attributes that are stored on individuals in certain kinds
of experiments. Here’s how you would record the values of ind.foo and ind.bar for every individual in the
population. We write to a stream object this time to demonstrate how to use the probe without a dataframe:

>>> import io
>>> stream = io.StringIO()
>>> probe = AttributesCSVProbe(attributes=['foo', 'bar'], stream=stream)
>>> context['leap']['generation'] = 100
>>> r = probe(test_population)
>>> print(stream.getvalue())
step,foo,bar

(continues on next page)

262 Chapter 10. leap_ec package

LEAP: Library for Evolutionary Algorithms in Python Documentation, Release v0.9dev

(continued from previous page)

100,GREEN,Colorless
100,15,green
100,BLUE,ideas
100,72.81,sleep

property dataframe

Property for retrieving a Pandas DataFrame representation of the collected data.

get_row_dict(ind)
Compute a full row of data from a given individual.

class leap_ec.probe.BestSoFarIterProbe(stream=<_io.TextIOWrapper name='<stdout>' mode='w'
encoding='UTF-8'>, header=True, context={'leap': {'distrib':
{'non_viable': 0}}})

Bases: Operator

This probe takes an iterator as input and will track the
best-so-far (BSF) individual in the all the individuals it sees.

Insert an object of this class into a pipeline to have it track the the best individual it sees so far. It will write the
current best individual for each __call__ invocation to a given stream in CSV format.

Like many operators, this operator checks the context object to retrieve the current generation number for output
purposes.

>>> from leap_ec import context, data
>>> from leap_ec import probe
>>> pop = data.test_population
>>> context['leap']['generation'] = 12

The probe will write its output to the provided stream (default is stdout, but we illustrate here with a StringIO
stream):

>>> import io
>>> stream = io.StringIO()
>>> probe = BestSoFarIterProbe(stream=stream)
>>> bsf_output_iter = probe(iter(pop))
>>> x = next(bsf_output_iter)
>>> x = next(bsf_output_iter)
>>> x = next(bsf_output_iter)
>>> print(stream.getvalue())
step,bsf
12,...
12,...
12,...

class leap_ec.probe.BestSoFarProbe(stream=<_io.TextIOWrapper name='<stdout>' mode='w'
encoding='UTF-8'>, header=True, context={'leap': {'distrib':
{'non_viable': 0}}})

Bases: Operator

This probe takes an list of individuals as input and will track the
best-so-far (BSF) individual across all the population it has seen.

Insert an object of this class into a pipeline to have it track the the best individual it sees so far. It will write the
current best individual for each __call__ invocation to a given stream in CSV format.

10.12. leap_ec.probe module 263

LEAP: Library for Evolutionary Algorithms in Python Documentation, Release v0.9dev

Like many operators, this operator checks the context object to retrieve the current generation number for output
purposes.

>>> from leap_ec import context, data
>>> from leap_ec import probe
>>> pop = data.test_population
>>> context['leap']['generation'] = 12

The probe will write its output to the provided stream (default is stdout, but we illustrate here with a StringIO
stream):

>>> import io
>>> stream = io.StringIO()
>>> probe = BestSoFarProbe(stream=stream)
>>> new_pop = probe(pop)
>>> print(stream.getvalue())
step,bsf
12,4

This operator does not change the state of the population: >>> new_pop == pop True

class leap_ec.probe.CartesianPhenotypePlotProbe(ax=None, xlim=(-5.12, 5.12), ylim=(-5.12, 5.12),
contours=None, granularity=None, title='Cartesian
Phenotypes', modulo=1, context={'leap': {'distrib':
{'non_viable': 0}}}, pad=())

Bases: object

Measure and plot a scatterplot of the populations’ location in a 2-D phenotype space.

Parameters
• ax (Axes) – Matplotlib axes to plot to (if None, a new figure will be created).

• xlim ((float, float)) – Bounds of the horizontal axis.

• ylim ((float, float)) – Bounds of the vertical axis.

• contours (Problem) – a problem defining a 2-D fitness function (this will be used to draw
fitness contours in the background of the scatterplot).

• granularity (float) – (Optional) spacing of the grid to sample points along while drawing
the fitness contours. If none is given, then the granularity will default to 1/50th of the range
of the function’s bounds attribute.

• modulo (int) – take and plot a measurement every modulo steps (default 1).

• pad – A list of extra gene values, used to fill in the hidden dimensions with contants while
drawing fitness contours.

Attach this probe to matplotlib Axes and then insert it into an EA’s operator pipeline to get a live phenotype plot
that updates every modulo steps.

>>> import matplotlib.pyplot as plt
>>> from leap_ec.probe import CartesianPhenotypePlotProbe
>>> from leap_ec.representation import Representation

>>> from leap_ec.individual import Individual
>>> from leap_ec.algorithm import generational_ea

264 Chapter 10. leap_ec package

LEAP: Library for Evolutionary Algorithms in Python Documentation, Release v0.9dev

>>> from leap_ec import ops
>>> from leap_ec.decoder import IdentityDecoder
>>> from leap_ec.real_rep.problems import CosineFamilyProblem
>>> from leap_ec.real_rep.initializers import create_real_vector
>>> from leap_ec.real_rep.ops import mutate_gaussian

>>> # The fitness landscape
>>> problem = CosineFamilyProblem(alpha=1.0, global_optima_counts=[2, 2], local_
→˓optima_counts=[2, 2])

>>> # If no axis is provided, a new figure will be created for the probe to write to
>>> trajectory_probe = CartesianPhenotypePlotProbe(contours=problem,
... xlim=(0, 1), ylim=(0, 1),
... granularity=0.025)

>>> # Create an algorithm that contains the probe in the operator pipeline

>>> pop_size = 100
>>> ea = generational_ea(max_generations=20, pop_size=pop_size,
... problem=problem,
...
... representation=Representation(
... individual_cls=Individual,
... initialize=create_real_vector(bounds=[[0.4, 0.6]] * 2),
... decoder=IdentityDecoder()
...),
...
... pipeline=[
... trajectory_probe, # Insert the probe into the pipeline␣
→˓like so
... ops.tournament_selection,
... ops.clone,
... mutate_gaussian(std=0.05, expected_num_mutations=
→˓'isotropic', bounds=(0, 1)),
... ops.evaluate,
... ops.pool(size=pop_size)
...])
>>> result = list(ea);

class leap_ec.probe.FitnessPlotProbe(ax=None, xlim=None, ylim=None, modulo=1,
title='Best-of-Generation Fitness', x_axis_value=None,
context={'leap': {'distrib': {'non_viable': 0}}})

Bases: PopulationMetricsPlotProbe

Measure and plot a population’s fitness trajectory.

Parameters
• ax (Axes) – Matplotlib axes to plot to (if None, a new figure will be created).

• xlim ((float, float)) – Bounds of the horizontal axis.

• ylim ((float, float)) – Bounds of the vertical axis.

• modulo (int) – take and plot a measurement every modulo steps (default 1).

10.12. leap_ec.probe module 265

LEAP: Library for Evolutionary Algorithms in Python Documentation, Release v0.9dev

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0
Cartesian Phenotypes

266 Chapter 10. leap_ec package

LEAP: Library for Evolutionary Algorithms in Python Documentation, Release v0.9dev

• title – title to print on the plot

• x_axis_value – optional function to define what value gets plotted on the x axis. Defaults
to pulling the ‘generation’ value out of the default context object.

• context – set a context object to query for the current generation. Defaults to the standard
leap_ec.context object.

Attach this probe to matplotlib Axes and then insert it into an EA’s operator pipeline.

>>> import matplotlib.pyplot as plt
>>> from leap_ec.probe import FitnessPlotProbe
>>> from leap_ec.representation import Representation

>>> f = plt.figure() # Setup a figure to plot to
>>> plot_probe = FitnessPlotProbe(ylim=(0, 70), ax=plt.gca())

>>> # Create an algorithm that contains the probe in the operator pipeline
>>> from leap_ec.individual import Individual
>>> from leap_ec.decoder import IdentityDecoder
>>> from leap_ec import ops
>>> from leap_ec.real_rep.problems import SpheroidProblem
>>> from leap_ec.real_rep.ops import mutate_gaussian
>>> from leap_ec.real_rep.initializers import create_real_vector

>>> from leap_ec.algorithm import generational_ea

>>> l = 10
>>> pop_size = 10
>>> ea = generational_ea(max_generations=100, pop_size=pop_size,
... problem=SpheroidProblem(maximize=False),
...
... representation=Representation(
... individual_cls=Individual,
... decoder=IdentityDecoder(),
... initialize=create_real_vector(bounds=[[-5.12, 5.12]] *␣
→˓l)
...),
...
... pipeline=[
... plot_probe, # Insert the probe into the pipeline like␣
→˓so
... ops.tournament_selection,
... ops.clone,
... mutate_gaussian(std=0.2, expected_num_mutations=
→˓'isotropic'),
... ops.evaluate,
... ops.pool(size=pop_size)
...])
>>> result = list(ea);

To get a live-updated plot that words like a real-time video of the EA’s progress, use this probe in conjunction
with the %matplotlib notebook magic for Jupyter Notebook (as opposed to %matplotlib inline, which only allows
static plots).

10.12. leap_ec.probe module 267

LEAP: Library for Evolutionary Algorithms in Python Documentation, Release v0.9dev

0 20 40 60 80 100

0

10

20

30

40

50

60

70

Best-of-Generation Fitness

268 Chapter 10. leap_ec package

LEAP: Library for Evolutionary Algorithms in Python Documentation, Release v0.9dev

class leap_ec.probe.FitnessStatsCSVProbe(stream=<_io.TextIOWrapper name='<stdout>' mode='w'
encoding='UTF-8'>, header=True, extra_metrics=None,
comment=None, job: ~typing.Optional[str] = None, notes:
~typing.Optional[~typing.Dict] = None, modulo: int = 1,
numpy_as_list=True, context: ~typing.Dict = {'leap': {'distrib':
{'non_viable': 0}}})

Bases: Operator

A probe that records basic fitness statistics for a population to a text stream in CSV format.

This is meant to capture the “bread and butter” values you’ll typically want to see in any population-based op-
timization experiment. If you want additional columns with custom values, you can pass in a dict of notes with
constant values or extra_metrics with functions to compute them.

Parameters
• stream – the file object to write to (defaults to sys.stdout)

• header – whether to print column names in the first line

• extra_metrics – a dict of ‘column_name’: function pairs, to compute optional extra
columns. The functions take a the population as input as a list of individuals, and their
return value is printed in the column.

• job – optional constant job ID, which will be printed as the first column

• notes (str) – a dict of optional constant-value columns to include in all rows (ex. to identify
and experiment or parameters)

• numpy_as_list (bool) – if True, numpy arrays will be first converted to a python list before
printing. This is intended for multiobjective fitnesses, where large numpy arrays are normally
split across csv rows with the default formatter.

• context – a LEAP context object, used to retrieve the current generation from the EA state
(i.e. from context[‘leap’][‘generation’])

In this example, we’ll set up two three inputs for the probe: an output stream, the generation number, and a
population.

We use a StringIO stream to print the results here, but in practice you often want to use sys.stdout (the default)
or a file object:

>>> import io
>>> stream = io.StringIO()

The probe also relies on LEAP’s algorithm context to determine the generation number:

>>> from leap_ec.global_vars import context
>>> context['leap']['generation'] = 100

Here’s how we’d compute fitness statistics for a test population. The population is unmodified:

>>> from leap_ec.data import test_population
>>> probe = FitnessStatsCSVProbe(stream=stream, job=15, notes={'description': 'just␣
→˓a test'})
>>> probe(test_population) == test_population
True

and the output has the following columns: >>> print(stream.getvalue()) job, description, step, bsf, mean_fitness,
std_fitness, min_fitness, max_fitness 15, just a test, 100, 4, 2.5, 1.11803. . . , 1, 4 <BLANKLINE>

10.12. leap_ec.probe module 269

LEAP: Library for Evolutionary Algorithms in Python Documentation, Release v0.9dev

To add custom columns, use the extra_metrics dict. For example, here’s a function that computes the median
fitness value of a population:

>>> import numpy as np
>>> median = lambda p: np.median([ind.fitness for ind in p])

We can include it in the fitness stats report like so:

>>> stream = io.StringIO()
>>> extras_probe = FitnessStatsCSVProbe(stream=stream, job="15", extra_metrics={
→˓'median_fitness': median})
>>> extras_probe(test_population) == test_population
True

>>> print(stream.getvalue())
job, step, bsf, mean_fitness, std_fitness, min_fitness, max_fitness, median_fitness
15, 100, 4, 2.5, 1.11803..., 1, 4, 2.5

comment_character = '#'

default_metric_cols = ('bsf', 'mean_fitness', 'std_fitness', 'min_fitness',
'max_fitness')

time_col = 'step'

write_comment(stream)

write_header(stream)

class leap_ec.probe.HeatMapPhenotypeProbe(ax=None, title='HeatMap of Phenotypes', modulo=1,
context={'leap': {'distrib': {'non_viable': 0}}})

Bases: object

class leap_ec.probe.HistPhenotypePlotProbe(ax=None, title='Histogram of Phenotypes', modulo=1,
context={'leap': {'distrib': {'non_viable': 0}}})

Bases: object

A visualization probe that uses matplotlib to show a live histogram of the population’s phenotypes.

This typically makes the most since for 1-dimensional genotypes.

class leap_ec.probe.PopulationMetricsPlotProbe(ax=None, metrics=None, xlim=None, ylim=None,
modulo=1, title='Population Metrics',
x_axis_value=None, context={'leap': {'distrib':
{'non_viable': 0}}})

Bases: object

reset()

class leap_ec.probe.SumPhenotypePlotProbe(ax=None, xlim=(-5.12, 5.12), ylim=(-5.12, 5.12),
problem=None, granularity=1, title='Sum Phenotypes',
modulo=1, context={'leap': {'distrib': {'non_viable': 0}}})

Bases: object

Plot the population’s location on a fitness landscape that is defined over the sum of a vector phenotype’s elements.
This is useful for visualizing OneMax functions and similar functions that can be understood in terms of a graph
with “the number of ones” along the x axis.

270 Chapter 10. leap_ec package

LEAP: Library for Evolutionary Algorithms in Python Documentation, Release v0.9dev

Parameters
• ax (Axes) – Matplotlib axes to plot to (if None, a new figure will be created).

• xlim ((float, float)) – Bounds of the horizontal axis.

• ylim ((float, float)) – Bounds of the vertical axis.

• problem (Problem) – a problem that will be used to draw a fitness curve.

• granularity (float) – (Optional) spacing of the grid to sample points along while drawing
the fitness contours. If none is given, then the granularity will default to 1.0.

• modulo (int) – take and plot a measurement every modulo steps (default 1).

Attach this probe to matplotlib Axes and then insert it into an EA’s operator pipeline to get a live phenotype plot
that updates every modulo steps.

>>> import matplotlib.pyplot as plt
>>> from leap_ec.probe import SumPhenotypePlotProbe
>>> from leap_ec.representation import Representation

>>> from leap_ec.individual import Individual
>>> from leap_ec.algorithm import generational_ea

>>> from leap_ec import ops
>>> from leap_ec.binary_rep.problems import DeceptiveTrap
>>> from leap_ec.binary_rep.initializers import create_binary_sequence
>>> from leap_ec.binary_rep.ops import mutate_bitflip

>>> # The fitness landscape
>>> problem = DeceptiveTrap()

>>> # If no axis is provided, a new figure will be created for the probe to write to
>>> dimensions = 20
>>> trajectory_probe = SumPhenotypePlotProbe(problem=problem,
... xlim=(0, dimensions), ylim=(0,␣
→˓dimensions))

>>> # Create an algorithm that contains the probe in the operator pipeline

>>> pop_size = 100
>>> ea = generational_ea(max_generations=20, pop_size=pop_size,
... problem=problem,
...
... representation=Representation(
... individual_cls=Individual,
... initialize=create_binary_sequence(length=dimensions)
...),
...
... pipeline=[
... trajectory_probe, # Insert the probe into the pipeline␣
→˓like so
... ops.tournament_selection,
... ops.clone,

(continues on next page)

10.12. leap_ec.probe module 271

LEAP: Library for Evolutionary Algorithms in Python Documentation, Release v0.9dev

(continued from previous page)

... mutate_bitflip(expected_num_mutations=1),

... ops.evaluate,

... ops.pool(size=pop_size)

...])
>>> result = list(ea);

0 1 2 3 4 5 6 7
0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

Sum Phenotypes

leap_ec.probe.best_of_gen(population)
Syntactic sugar to select the best individual in a population.

Parameters
• population – a list of individuals

• context – optional dict of auxiliary state (ignored)

>>> from leap_ec.data import test_population
>>> print(best_of_gen(test_population))
Individual<...> with fitness 4

leap_ec.probe.num_fixated_metric(population: list)
Computes the genetic diversity of the population by counting the number of variables in the genome that have
zero variance.

This is a so-called “column-wise” metric, in the sense that it considers each element of the solution vectors

272 Chapter 10. leap_ec package

LEAP: Library for Evolutionary Algorithms in Python Documentation, Release v0.9dev

independently.

leap_ec.probe.pairwise_squared_distance_metric(population: list)
Computes the genetic diversity of a population by considering the sum of squared Euclidean distances between
individual genomes.

We compute this in 𝑂(𝑛) by writing the sum in terms of distance from the population centroid 𝑐:

𝒟(population) =
𝑛∑︁

𝑖=1

𝑛∑︁
𝑗=1

‖𝑥𝑖 − 𝑥𝑗‖2 = 2𝑛

𝑛∑︁
𝑖=1

‖𝑥𝑖 − 𝑐‖2

leap_ec.probe.print_individual(next_individual: ~typing.Iterator = '__no__default__', prefix='',
numpy_as_list=False, stream=<_io.TextIOWrapper name='<stdout>'
mode='w' encoding='UTF-8'>)→ Iterator

Just echoes the individual from within the pipeline

Uses next_individual.__str__

Parameters
• next_individual – iterator for next individual to be printed

• prefix – prefix appended to the start of the line

• numpy_as_list – If True, numpy arrays are converted to lists before printing

• stream – File object passed to print

Returns
the same individual, unchanged

leap_ec.probe.print_population(population, generation, numpy_as_list=False)
Convenience function for pretty printing a population that’s associated with a given generation

Parameters
• population – The population of individuals to be printed

• generation – The generation of the population

• numpy_as_list – If True, numpy arrays are converted to lists before printing

Returns
None

leap_ec.probe.print_probe(population='__no__default__', probe='__no__default__',
stream=<_io.TextIOWrapper name='<stdout>' mode='w' encoding='UTF-8'>,
prefix='')

pipeline operator for printing the given population

This is really a wrapper around probe that, itself, gets passed te entire population.

The optional prefix is used to tag the output. For example, you may want to print ‘before’ to indicate that the
population is before an operator is applied.

Parameters
• population – to be printed

• probe – secondary probe that gets the poplation as input and for which the output is passed
to stream

• stream – to write output

10.12. leap_ec.probe module 273

LEAP: Library for Evolutionary Algorithms in Python Documentation, Release v0.9dev

• prefix – optional string prefix to prepend to output

Returns
population

leap_ec.probe.sum_of_variances_metric(population: list)
Computes the genetic diversity of a population by considering the sum of the variances of each variable in the
genome.

𝒟(population) =
𝐿∑︁

𝑖=1

E𝑗∈𝑃 [𝑥𝑗 [𝑖]− E[𝑥𝑗 [𝑖]]]

This is a so-called “column-wise” metric, in the sense that it considers each element of the solution vectors
independently.

10.13 leap_ec.problem module

Defines the abstract-base classes Problem, ScalarProblem, and FunctionProblem.

class leap_ec.problem.AlternatingProblem(problems, modulo, context={'leap': {'distrib': {'non_viable':
0}, 'generation': 20}})

Bases: Problem

equivalent(first_fitness, second_fitness)

evaluate(phenome)
Evaluate the given phenome.

Practitioners must over-ride this member function.

Note that by default the individual comparison operators assume a maximization problem; if this is a min-
imization problem, then just negate the value when returning the fitness.

Parameters
phenome – the phenome to evaluate (this will not be modified)

Returns
the fitness value

get_current_problem()

worse_than(first_fitness, second_fitness)

class leap_ec.problem.AverageFitnessProblem(wrapped_problem, n: int)
Bases: Problem

Problem wrapper that copies each genome n times, evaluates them, and averages the results back together to
produce a mean-fitness estimate.

This is a common strategy for approaching noisy fitness functions, to make it easier for an optimization algorithm
to follow a gradient.

>>> from leap_ec.real_rep.problems import NoisyQuarticProblem
>>> p = AverageFitnessProblem(
... wrapped_problem = NoisyQuarticProblem(),
... n = 20)
>>> x = [1, 1, 1, 1]

(continues on next page)

274 Chapter 10. leap_ec package

LEAP: Library for Evolutionary Algorithms in Python Documentation, Release v0.9dev

(continued from previous page)

>>> y = p.evaluate(x)
>>> print(f"Fitness: {y}") # The mean of this will be approximately 10
Fitness: ...

equivalent(first_fitness, second_fitness)

evaluate(phenome)
Evaluates the wrapped function n times sequentially and returns the mean.

evaluate_multiple(phenomes: list)
Evaluate a collections of phenomes by creating n jobs for each phenome, sending all the jobs to the wrapped
evaluate_multiple() function, and then averaging the n results for each phenome into a list of results.

worse_than(first_fitness, second_fitness)

class leap_ec.problem.ConstantProblem(maximize=False, c=1.0)
Bases: ScalarProblem

A flat landscape, where all phenotypes have the same fitness.

This is sometimes useful for sanity checks or as a control in certain kinds of research.

𝑓(𝑥⃗) = 𝑐

Parameters
c (float) – the fitness value to return for any input.

from leap_ec.problem import ConstantProblem
from leap_ec.real_rep.problems import plot_2d_problem
bounds = ConstantProblem.bounds
plot_2d_problem(ConstantProblem(), xlim=bounds, ylim=bounds, granularity=0.025)

bounds = (-1.0, 1.0)

evaluate(phenome, *args, **kwargs)
Return a contant value for any input phenome:

>>> phenome = [0.5, 0.8, 1.5]
>>> ConstantProblem().evaluate(phenome)
1.0

>>> ConstantProblem(c=500.0).evaluate('foo bar')
500.0

Parameters
phenome – phenome to be evaluated

Returns
1.0, or the constant defined in the constructor

class leap_ec.problem.CooperativeProblem(wrapped_problem, num_trials: int, collaborator_selector,
combined_decoder: ~leap_ec.decoder.Decoder =
IdentityDecoder(), log_stream=None,
combine_genomes=<function
CooperativeProblem.<lambda>>, context={'leap': {'distrib':
{'non_viable': 0}, 'generation': 20}})

10.13. leap_ec.problem module 275

LEAP: Library for Evolutionary Algorithms in Python Documentation, Release v0.9dev

1.0
0.5

0.0
0.5

1.0 1.0
0.5

0.0
0.5

1.0

0.96
0.98
1.00

1.02

1.04

276 Chapter 10. leap_ec package

LEAP: Library for Evolutionary Algorithms in Python Documentation, Release v0.9dev

Bases: Problem

A Problem that implements cooperative coevolution. This provides a fitness function that takes partial solu-
tions as input (i.e. from one of the subpopulations of the cooperative algorithm), and evaluates their fitness by
combining them with other individuals in the population.

You can think of a CooperativeProblem as defining a fitness function for a subpopulation in a multi-population
model, where the fitness function that is computed is itself a function of the state of the other subpopulations:

..math

mbox{fitness} = f_{p_i}(vec{mathbf{x}}, mathcal{P} \ p_i)

This class works by wrapping another fitness function, which is defined over complete solutions, and by taking a
selection operator (which is used to select “collaborators” from other subpopulations to form complete solutions):

>>> from leap_ec import ops
>>> from leap_ec.real_rep.problems import SpheroidProblem
>>> complete_problem = SpheroidProblem()
>>> problem = CooperativeProblem(
... wrapped_problem = SpheroidProblem(),
... num_trials = 3,
... collaborator_selector = ops.random_selection)

equivalent(first_fitness, second_fitness)

evaluate(phenome, *args, **kwargs)
Evaluate the given phenome.

Practitioners must over-ride this member function.

Note that by default the individual comparison operators assume a maximization problem; if this is a min-
imization problem, then just negate the value when returning the fitness.

Parameters
phenome – the phenome to evaluate (this will not be modified)

Returns
the fitness value

evaluate_multiple(phenomes, individuals)
Evaluate multiple phenomes all at once, returning a list of fitness values.

By default this just calls self.evaluate() multiple times. Override this if you need to, say, send a group of
individuals off to parallel

worse_than(first_fitness, second_fitness)

class leap_ec.problem.ExternalProcessProblem(command: str, maximize: bool, args: Optional[list] =
None)

Bases: ScalarProblem

Evaluate individuals by launching an external program, writing phenomes to its stdin as CSV rows, and reading
back fitness values from its stdout.

Assumes that individuals are represented with list phenomes with elements that can be cast to strings.

evaluate(phenome)
Evaluate the given phenome.

Practitioners must over-ride this member function.

10.13. leap_ec.problem module 277

LEAP: Library for Evolutionary Algorithms in Python Documentation, Release v0.9dev

Note that by default the individual comparison operators assume a maximization problem; if this is a min-
imization problem, then just negate the value when returning the fitness.

Parameters
phenome – the phenome to evaluate (this will not be modified)

Returns
the fitness value

evaluate_multiple(phenomes, *args, **kwargs)
Evaluate multiple phenomes all at once, returning a list of fitness values.

By default this just calls self.evaluate() multiple times. Override this if you need to, say, send a group of
individuals off to parallel

class leap_ec.problem.FitnessOffsetProblem(problem, fitness_offset, maximize=None)
Bases: ScalarProblem

Takes an existing function and adds a constant value to it output.

𝑓 ′(x) = 𝑓(x) + 𝑐

Parameters
• problem – the original problem to wrape

• fitness_offset (float) – the scalar constant to add

evaluate(phenome)
Evaluates the phenome’s fitness in the wrapped function, then adds the constant.

For example, here the original fitness function returns 5.0, but we subtract 3.5 from it so that it yields 1.5.

>>> original = ConstantProblem(c=5.0)
>>> problem = FitnessOffsetProblem(original, fitness_offset=-3.5)
>>> problem.evaluate([0, 1, 2])
1.5

class leap_ec.problem.FunctionProblem(fitness_function, maximize)
Bases: ScalarProblem

A convenience wrapper that takes a vanilla function that returns scalar fitness values and makes it usable as an
objective function.

evaluate(phenome, *args, **kwargs)
Evaluate the given phenome.

Practitioners must over-ride this member function.

Note that by default the individual comparison operators assume a maximization problem; if this is a min-
imization problem, then just negate the value when returning the fitness.

Parameters
phenome – the phenome to evaluate (this will not be modified)

Returns
the fitness value

class leap_ec.problem.Problem

Bases: ABC

Abstract Base Class used to define problem definitions.

278 Chapter 10. leap_ec package

LEAP: Library for Evolutionary Algorithms in Python Documentation, Release v0.9dev

A Problem is in charge of two major parts of an EA’s behavior:

1. Fitness evaluation (the evaluate() method)

2. Fitness comparision (the worse_than() and equivalent() methods)

abstract equivalent(first_fitness, second_fitness)

abstract evaluate(phenome, *args, **kwargs)
Evaluate the given phenome.

Practitioners must over-ride this member function.

Note that by default the individual comparison operators assume a maximization problem; if this is a min-
imization problem, then just negate the value when returning the fitness.

Parameters
phenome – the phenome to evaluate (this will not be modified)

Returns
the fitness value

evaluate_multiple(phenomes)
Evaluate multiple phenomes all at once, returning a list of fitness values.

By default this just calls self.evaluate() multiple times. Override this if you need to, say, send a group of
individuals off to parallel

abstract worse_than(first_fitness, second_fitness)

class leap_ec.problem.ScalarProblem(maximize)
Bases: Problem

A problem that compares individuals based on their scalar fitness values.

Inherit from this class and implement the evaluate() method to implement an objective function that returns a
single real-valued fitness value.

equivalent(first_fitness, second_fitness)
Used in Individual.__eq__().

By default returns first.fitness== second.fitness. Please over-ride if this does not hold for your problem.

Returns
true if the first individual is equal to the second

worse_than(first_fitness, second_fitness)
Used in Individual.__lt__().

By default returns first_fitness < second_fitness if a maximization problem, else first_fitness > sec-
ond_fitness if a minimization problem. Please over-ride if this does not hold for your problem.

Returns
true if the first individual is less fit than the second

leap_ec.problem.concat_combine(collaborators)
Combine a list of individuals by concatenating their genomes.

This is a convenience function intended for use with CooperativeProblem.

10.13. leap_ec.problem module 279

LEAP: Library for Evolutionary Algorithms in Python Documentation, Release v0.9dev

10.14 leap_ec.representation module

A Representation is a simple data structure that wraps the components needed to define, initialize, and decode individ-
uals.

This just serves as some syntactic sugar when we are specifying algorithms—so that representation-related components
are grouped together and clearly labeled Representation.

class leap_ec.representation.Representation(initialize, decoder=IdentityDecoder(),
individual_cls=<class 'leap_ec.individual.Individual'>)

Bases: object

Syntactic sugar for some of the monolithic functions that conveniently combines a decoder, initializer, and an
Individual class since those always work in tandem, but can still be loosely coupled.

create_individual(problem)

Make a single individual.

create_population(pop_size, problem)

make a new population

Parameters
• pop_size – how many individuals should be in the population

• problem – to be solved

Returns
a population of individual_cls individuals

10.15 leap_ec.simple module

Provides a very high-level convenience function for a very general EA, ea_solve().

leap_ec.simple.ea_solve(function, bounds, generations=100, pop_size=2, mutation_std=1.0, maximize=False,
viz=False, viz_ylim=(0, 1), hard_bounds=True, dask_client=None,
stream=<_io.TextIOWrapper name='<stdout>' mode='w' encoding='UTF-8'>)

Provides a simple, top-level interfact that optimizes a real-valued function using a simple generational EA.

Parameters
• function – the function to optimize; should take lists of real numbers as input and return a

float fitness value

• bounds ([(float, float)]) – a list of (min, max) bounds to define the search space

• generations (int) – the number of generations to run for

• pop_size (int) – the population size

• mutation_std (float) – the width of the mutation distribution

• maximize (bool) – whether to maximize the function (else minimize)

• viz (bool) – whether to display a live best-of-generation plot

• hard_bounds (bool) – if True, bounds are enforced at all times during evolution; otherwise
they are only used to initialize the population.

• viz_ylim ((float, float)) – initial bounds to use of the plots vertical axis

280 Chapter 10. leap_ec package

LEAP: Library for Evolutionary Algorithms in Python Documentation, Release v0.9dev

• dask_client – is optional dask Client to enable parallel evaluations

• stream – a stream to write best-so-far values to (defaults to stdout)

The basic call includes instrumentation that prints the best-so-far fitness value of each generation to stdout:

>>> import io
>>> from leap_ec.simple import ea_solve
>>> stream = io.StringIO()
>>> ea_solve(sum, bounds=[(0, 1)]*5, stream=stream)
array([..., ..., ..., ..., ...])

The stream captures the best-so-far individual at each iteration of the algorithm: >>> print(stream.getvalue()) #
doctest: +ELLIPSIS, +NORMALIZE_WHITESPACE step,bsf 0,. . . 1,. . . 2,. 99,. . . <BLANKLINE>

When viz=True, a live BSF plot will also display:

>>> ea_solve(sum, bounds=[(0, 1)]*5, viz=True)
array([..., ..., ..., ..., ...])

0 20 40 60 80 100

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

Best-of-Generation Fitness

10.15. leap_ec.simple module 281

LEAP: Library for Evolutionary Algorithms in Python Documentation, Release v0.9dev

10.16 leap_ec.statistical_helpers module

Helpers for testing the output of stochastic functions.

leap_ec.statistical_helpers.collect_distribution(function, samples: int)
Count the number of times the given function returns each output value.

leap_ec.statistical_helpers.equals_gaussian(observed_samples, reference_mean: float, reference_std:
float, num_reference_observations: int, p: float)→ bool

A convenience function for computing a t-test for equality of two independent samples, using samples from one
and test statistics from the other.

Assumes equal variance samples.

>>> import numpy as np
>>> observed = np.random.normal(15, 1, size=1000)
>>> equals_gaussian(observed, 15, 1, 1000, p=0.05)
True

leap_ec.statistical_helpers.equals_uniform(observed_distribution: Dict, p: float)→ bool
Use a chi^2 test to determine whether the observed distribution is uniform.

This offers convenience over stochastic_equals(), because the expected distribution doesn’t have to be manually
specified.

For example, we do not reject the hypothesis that [5060, 4940] comes from a uniform distribution:

>>> observed = { 0: 5060, 1: 4940 }
>>> equals_uniform(observed, p=0.01)
True

The keys are arbitrary, so we can use them to clearly express what we are testing:

>>> observed = { 'Left': 101, 'Right': 100, 'Up': 99, 'Down': 100 }
>>> equals_uniform(observed, p=0.01)
True

leap_ec.statistical_helpers.stochastic_chisquare(expected_distribution, distribution)
Use a chi^2 distribution to compute a p-value for the probability of rejecting the hypothesis that the given
distribution matches the expected distribution.

The null hypothesis here is that the distributions are equal.

This takes two dictionaries of values:

>>> expected_distribution = { 1: 10, 2: 10, 3: 10, 4: 10, 5: 10, 6: 10}
>>> distribution = { 1: 5, 2: 8, 3: 9, 4: 8, 5: 10, 6: 20}
>>> stochastic_chisquare(expected_distribution, distribution)
0.01990...

The p-value is low, because the samples are quite different, so the “probability of seeing that big a difference or
greater if the two distributions are equal” is low.

Very similar samples, by contrast, yield high p values:

282 Chapter 10. leap_ec package

LEAP: Library for Evolutionary Algorithms in Python Documentation, Release v0.9dev

>>> expected_distribution = { 1: 10, 2: 10, 3: 10, 4: 10, 5: 10, 6: 10}
>>> distribution = { 1: 10, 2: 10, 3: 10, 4: 10, 5: 10, 6: 10}
>>> stochastic_chisquare(expected_distribution, distribution)
1.0

leap_ec.statistical_helpers.stochastic_equals(expected_distribution: Dict, observed_distribution:
Dict, p: float)→ bool

Use a chi^2 test to determine whether two discrete distributions are equal. Specifically, this returns false if we
reject the hypothesis that they are equal at the given p-value.

Lower p-value thresholds make the test more conservative, in the sense that it will assume the distributions are
equal unless there is very good evidence to the contrary. We typically want to use low p-value thresholds for unit
tests, for example, to avoid false test failures (type-I errors).

For example, we do not reject the hypothesis that [5060, 4940] comes from a uniform distribution:

>>> expected = { 0: 5000, 1: 5000 }
>>> observed = { 0: 5060, 1: 4940 }
>>> stochastic_equals(expected, observed, p=0.01)
True

Here we also do not reject the hypothesis that a 6-sided die is unbiased:

>>> expected = { 1: 10, 2: 10, 3: 10, 4: 10, 5: 10, 6: 10}
>>> observed = { 1: 5, 2: 8, 3: 9, 4: 8, 5: 10, 6: 20}
>>> stochastic_equals(expected, observed, p=0.01)
True

If we relax the p-value threshold, we can conclude that the die is in fact biased (but with some increased risk of
type-I error):

But we would have if we used a 95% significance level instead of 99%: >>> stochastic_equals(expected, ob-
served, p=0.05) False

10.17 leap_ec.util module

Defines miscellaneous utility functions.

TODO we have two almost identical counters that could be consolidated into a single class.

print_list : for pretty printing a list when pprint isn’t sufficient.

leap_ec.util.birth_brander()

This pipeline operator will add or update a “birth” attribute for passing individuals.

If the individual already has a birth, just let it float by with the original value. If it doesn’t, assign the individual
the current birth ID, and then increment the global, stored birth count.

We don’t increment a birth ID in the ctor because that overall birth count will bloat due to clone operations.
Inserting this operator into the pipeline will ensure that each individual that passes through is properly “branded”
with a unique birth ID. However, care must be made to ensure that the initial population is similarly branded.

Provides:

• brand_population() to brand an entire population all at once,
which is useful for branding initial populations.

10.17. leap_ec.util module 283

LEAP: Library for Evolutionary Algorithms in Python Documentation, Release v0.9dev

• brand() for explicitly branding a single individual

Parameters
next_thing – preceding individual in the pipeline

Returns
branded individual

leap_ec.util.get_step(context={'leap': {'distrib': {'non_viable': 0}, 'generation': 100}}, use_generation=None,
use_births=None)

Returns the current step of an algorithm using context. Will infer which to use if neither is specified with
use_generation or use_births. If both are set to True, will raise an error.

Parameters
• context – the context from which the generations or births is taken from.

• use_generation – an override to use generation.

• use_births – an override to use births.

leap_ec.util.inc_births(context={'leap': {'distrib': {'non_viable': 0}, 'generation': 100}}, start=0,
callbacks=())

This tracks the current number of births

The context is used to report the current births, though that can also be obtained by inc_births.births()

This will optionally call all the given callback functions whenever the births are incremented. The registered
callback functions should have a signature f(int), where the int is the new birth.

>>> from leap_ec.global_vars import context
>>> my_inc_births = inc_births(context)

Each time we call the object, the birth count is incremented and returned:

>>> my_inc_births()
1

>>> my_inc_births()
2

>>> my_inc_births()
3

The count can be viewed without changing it like so:

>>> my_inc_births.births()
3

And decremented like so:

>>> my_inc_births.do_decrement()
2

Parameters
• context – will set [‘leap’][‘births’] to the incremented births

284 Chapter 10. leap_ec package

LEAP: Library for Evolutionary Algorithms in Python Documentation, Release v0.9dev

• start – if we want to start counter at a higher value; e.g., take into consideration births of
an initial population

• callbacks – optional list of callback function to call when a birth numberis incremented

Returns
function for incrementing births

leap_ec.util.inc_generation(start_generation: int = 0, context={'leap': {'distrib': {'non_viable': 0},
'generation': 100}}, callbacks=())

This tracks the current generation

The context is used to report the current generation, though that can also be given by inc_generation.generation().

This will optionally call all the given callback functions whenever the generation is incremented. The registered
callback functions should have a signature f(int), where the int is the new generation.

>>> from leap_ec.global_vars import context
>>> my_inc_generation = inc_generation(context)

Parameters
• context – will set [‘leap’][‘generation’] to the incremented generation

• callbacks – optional list of callback function to call when a generation is incremented

Returns
function for incrementing generations

leap_ec.util.is_flat(obj)

Returns
True if obj is a flat collection (as opposed to, say, a hierarchical list of lists).

>>> is_flat((0, 1))
True

>>> is_flat(1)
False

>>> is_flat([(0, 1), (0, 1)])
False

leap_ec.util.is_iterable(obj)

Parameters
obj – that we want to determine is a generator

Returns
True if obj can use next(obj)

leap_ec.util.is_sequence(obj)

Returns
True if obj is a test_sequence

Cribbed from https://stackoverflow.com/questions/2937114/python-check-if-an-object-is-a-sequence?lq=1

E.g., used to determine if gaussian mutation has a single specified standard deviation, or a vector of standard
deviations.

10.17. leap_ec.util module 285

https://stackoverflow.com/questions/2937114/python-check-if-an-object-is-a-sequence?lq=1

LEAP: Library for Evolutionary Algorithms in Python Documentation, Release v0.9dev

>>> is_sequence(0.5)
False

>>> is_sequence([0.1, 0.2, 0.3])
True

leap_ec.util.print_list(l)
Return a string representation of a list.

This uses __str__() to resolve the elements of the list:

>>> from leap_ec.individual import Individual
>>> import numpy as np
>>> l = [Individual(np.array([0, 1, 2])),
... Individual(np.array([3, 4, 5]))]
>>> print_list(l)
[Individual<...> ..., Individual<...> ...]

As opposed to the standard printing mechanism, which calls __repr__() on the elements to produce

>>> print(l)
[Individual<...>(...), Individual<...>(...)]

Parameters
l –

Returns

leap_ec.util.wrap_curry(f)
Wraps and curries in conjunction, so the function signature remains.

10.18 Module contents

leap_ec.leap_logger_name = 'leap_ec'

The environment variable we use to signal that our test harness is being run.

286 Chapter 10. leap_ec package

CHAPTER

ELEVEN

REFERENCES

287

LEAP: Library for Evolutionary Algorithms in Python Documentation, Release v0.9dev

288 Chapter 11. References

CHAPTER

TWELVE

INDICES AND TABLES

• genindex

• modindex

• search

289

LEAP: Library for Evolutionary Algorithms in Python Documentation, Release v0.9dev

290 Chapter 12. Indices and tables

BIBLIOGRAPHY

[NSGA-II] Deb, Kalyanmoy, Amrit Pratap, Sameer Agarwal, and T. A. M. T. Meyarivan. “A Fast and Elitist Multi-
objective Genetic Algorithm: NSGA-II.” IEEE transactions on evolutionary computation 6, no. 2 (2002):
182-197.

[Burlacu] Bogdan Burlacu. 2022. “Rank-based Non-dominated Sorting”. arXiv.
DOI:https://doi.org/10.48550/ARXIV.2203.13654

[CSB20] Mark A. Coletti, Eric O. Scott, and Jeffrey K. Bassett. Library for evolutionary algorithms in python (leap).
In Proceedings of the 2020 Genetic and Evolutionary Computation Conference Companion, GECCO '20,
1571–1579. New York, NY, USA, 2020. Association for Computing Machinery. URL: https://doi.org/10.
1145/3377929.3398147, doi:10.1145/3377929.3398147.

[Koz92] John R Koza. Genetic programming: on the programming of computers by means of natural selection.
Volume 1. MIT press, 1992.

[LP02] Sean Luke and Liviu Panait. Lexicographic parsimony pressure. In Proceedings of the 4th Annual Con-
ference on Genetic and Evolutionary Computation, 829–836. 2002.

[RonkkonenLKL08] Jani Rönkkönen, Xiaodong Li, Ville Kyrki, and Jouni Lampinen. A generator for multimodal test
functions with multiple global optima. In Simulated Evolution and Learning: 7th International Confer-
ence, SEAL 2008, Melbourne, Australia, December 7-10, 2008. Proceedings 7, 239–248. Springer, 2008.

291

https://doi.org/10.1145/3377929.3398147
https://doi.org/10.1145/3377929.3398147
https://doi.org/10.1145/3377929.3398147

LEAP: Library for Evolutionary Algorithms in Python Documentation, Release v0.9dev

292 Bibliography

PYTHON MODULE INDEX

l
leap_ec, 286
leap_ec.algorithm, 237
leap_ec.binary_rep, 150
leap_ec.binary_rep.decoders, 145
leap_ec.binary_rep.initializers, 146
leap_ec.binary_rep.ops, 147
leap_ec.binary_rep.problems, 148
leap_ec.contrib, 151
leap_ec.contrib.transfer, 151
leap_ec.contrib.transfer.sequential, 150
leap_ec.data, 242
leap_ec.decoder, 242
leap_ec.distrib, 157
leap_ec.distrib.asynchronous, 152
leap_ec.distrib.evaluate, 153
leap_ec.distrib.individual, 154
leap_ec.distrib.logger, 155
leap_ec.distrib.probe, 155
leap_ec.distrib.synchronous, 156
leap_ec.executable_rep, 173
leap_ec.executable_rep.cgp, 157
leap_ec.executable_rep.executable, 162
leap_ec.executable_rep.neural_network, 163
leap_ec.executable_rep.problems, 165
leap_ec.executable_rep.rules, 167
leap_ec.global_vars, 244
leap_ec.individual, 244
leap_ec.int_rep, 177
leap_ec.int_rep.initializers, 173
leap_ec.int_rep.ops, 174
leap_ec.landscape_features, 180
leap_ec.landscape_features.exploratory, 177
leap_ec.multiobjective, 191
leap_ec.multiobjective.asynchronous, 180
leap_ec.multiobjective.nsga2, 182
leap_ec.multiobjective.ops, 183
leap_ec.multiobjective.probe, 185
leap_ec.multiobjective.problems, 185
leap_ec.ops, 246
leap_ec.parsimony, 260
leap_ec.probe, 261

leap_ec.problem, 274
leap_ec.real_rep, 233
leap_ec.real_rep.initializers, 191
leap_ec.real_rep.ops, 192
leap_ec.real_rep.problems, 193
leap_ec.representation, 280
leap_ec.segmented_rep, 237
leap_ec.segmented_rep.decoders, 233
leap_ec.segmented_rep.initializers, 234
leap_ec.segmented_rep.ops, 235
leap_ec.simple, 280
leap_ec.statistical_helpers, 282
leap_ec.util, 283

293

LEAP: Library for Evolutionary Algorithms in Python Documentation, Release v0.9dev

294 Python Module Index

INDEX

Symbols
__init__() (leap_ec.binary_rep.decoders.BinaryToIntDecoder

method), 13
__init__() (leap_ec.binary_rep.decoders.BinaryToIntGreyDecoder

method), 15
__init__() (leap_ec.binary_rep.decoders.BinaryToRealDecoder

method), 15
__init__() (leap_ec.binary_rep.decoders.BinaryToRealDecoderCommon

method), 14
__init__() (leap_ec.binary_rep.decoders.BinaryToRealGreyDecoder

method), 16
__init__() (leap_ec.decoder.Decoder method), 13
__init__() (leap_ec.decoder.IdentityDecoder method),

13
__init__() (leap_ec.individual.Individual method), 8
__init__() (leap_ec.individual.RobustIndividual

method), 10
__init__() (leap_ec.individual.WholeEvaluatedIndividual

method), 11

A
AckleyProblem (class in leap_ec.real_rep.problems),

193
action_bounds (leap_ec.executable_rep.rules.PittRulesDecoder

property), 167
actions (leap_ec.executable_rep.rules.Rule property),

173
add_segment() (in module leap_ec.segmented_rep.ops),

235
AlternatingProblem (class in leap_ec.problem), 274
apply() (leap_ec.contrib.transfer.sequential.PopulationSeedingRepertoire

method), 150
apply() (leap_ec.contrib.transfer.sequential.Repertoire

method), 151
apply_hard_bounds() (in module

leap_ec.real_rep.ops), 192
apply_mutation() (in module

leap_ec.segmented_rep.ops), 235
ArgmaxExecutable (class in

leap_ec.executable_rep.executable), 162
arity (leap_ec.executable_rep.cgp.FunctionPrimitive

property), 161

arity (leap_ec.executable_rep.cgp.NAND property),
161

arity (leap_ec.executable_rep.cgp.NotX property), 161
arity (leap_ec.executable_rep.cgp.Primitive property),

161
AttributesCSVProbe (class in leap_ec.probe), 261
AverageFitnessProblem (class in leap_ec.problem),

274

B
best_of_gen() (in module leap_ec.probe), 272
BestSoFarIterProbe (class in leap_ec.probe), 263
BestSoFarProbe (class in leap_ec.probe), 263
BinaryToIntDecoder (class in

leap_ec.binary_rep.decoders), 145
BinaryToIntGreyDecoder (class in

leap_ec.binary_rep.decoders), 145
BinaryToRealDecoder (class in

leap_ec.binary_rep.decoders), 146
BinaryToRealDecoderCommon (class in

leap_ec.binary_rep.decoders), 146
BinaryToRealGreyDecoder (class in

leap_ec.binary_rep.decoders), 146
birth_brander() (in module leap_ec.util), 283
birth_id (leap_ec.distrib.individual.DistributedIndividual

attribute), 154
bounds (leap_ec.multiobjective.problems.ZDT1Problem

property), 187
bounds (leap_ec.multiobjective.problems.ZDT2Problem

property), 188
bounds (leap_ec.multiobjective.problems.ZDT3Problem

property), 188
bounds (leap_ec.multiobjective.problems.ZDT4Problem

property), 189
bounds (leap_ec.multiobjective.problems.ZDT5Problem

property), 190
bounds (leap_ec.multiobjective.problems.ZDT6Problem

property), 191
bounds (leap_ec.multiobjective.problems.ZDTBenchmarkProblem

property), 191
bounds (leap_ec.problem.ConstantProblem attribute),

275

295

LEAP: Library for Evolutionary Algorithms in Python Documentation, Release v0.9dev

bounds (leap_ec.real_rep.problems.AckleyProblem at-
tribute), 194

bounds (leap_ec.real_rep.problems.CosineFamilyProblem
attribute), 195

bounds (leap_ec.real_rep.problems.GaussianProblem
attribute), 198

bounds (leap_ec.real_rep.problems.GriewankProblem
attribute), 199

bounds (leap_ec.real_rep.problems.LangermannProblem
attribute), 201

bounds (leap_ec.real_rep.problems.LunacekProblem at-
tribute), 203

bounds (leap_ec.real_rep.problems.NoisyQuarticProblem
attribute), 208

bounds (leap_ec.real_rep.problems.RastriginProblem
attribute), 215

bounds (leap_ec.real_rep.problems.RosenbrockProblem
attribute), 217

bounds (leap_ec.real_rep.problems.SchwefelProblem at-
tribute), 219

bounds (leap_ec.real_rep.problems.ShekelProblem at-
tribute), 220

bounds (leap_ec.real_rep.problems.SpheroidProblem at-
tribute), 222

bounds (leap_ec.real_rep.problems.StepProblem at-
tribute), 223

bounds (leap_ec.real_rep.problems.WeierstrassProblem
attribute), 228

bounds() (leap_ec.executable_rep.cgp.CGPDecoder
method), 157

bounds() (leap_ec.executable_rep.rules.PittRulesDecoder
method), 168

build_repertoire() (leap_ec.contrib.transfer.sequential.PopulationSeedingRepertoire
method), 150

build_repertoire() (leap_ec.contrib.transfer.sequential.Repertoire
method), 151

C
CartesianPhenotypePlotProbe (class in

leap_ec.probe), 264
cgp_art_primitives() (in module

leap_ec.executable_rep.cgp), 161
cgp_genome_mutate() (in module

leap_ec.executable_rep.cgp), 161
cgp_mutate() (in module leap_ec.executable_rep.cgp),

162
CGPDecoder (class in leap_ec.executable_rep.cgp), 157
CGPExecutable (class in leap_ec.executable_rep.cgp),

159
CGPWithParametersDecoder (class in

leap_ec.executable_rep.cgp), 160
check_constraints()

(leap_ec.executable_rep.cgp.CGPDecoder
method), 157

clone() (in module leap_ec.ops), 250
clone() (leap_ec.distrib.individual.DistributedIndividual

method), 154
clone() (leap_ec.individual.Individual method), 244
collect_distribution() (in module

leap_ec.statistical_helpers), 282
combinations (leap_ec.landscape_features.exploratory.ELAConvexity

property), 179
comment_character (leap_ec.probe.FitnessStatsCSVProbe

attribute), 270
compute_expected_probability() (in module

leap_ec.ops), 250
compute_population_values() (in module

leap_ec.ops), 250
concat_combine() (in module leap_ec.ops), 250
concat_combine() (in module leap_ec.problem), 279
condition_bounds (leap_ec.executable_rep.rules.PittRulesDecoder

property), 168
conditions (leap_ec.executable_rep.rules.Rule prop-

erty), 173
const_evaluate() (in module leap_ec.ops), 251
ConstantProblem (class in leap_ec.problem), 275
convex_p() (leap_ec.landscape_features.exploratory.ELAConvexity

method), 179
CooperativeEvaluate (class in leap_ec.ops), 246
CooperativeProblem (class in leap_ec.problem), 275
copy_segment() (in module

leap_ec.segmented_rep.ops), 236
CosineFamilyProblem (class in

leap_ec.real_rep.problems), 194
create_binary_sequence() (in module

leap_ec.binary_rep.initializers), 146
create_cgp_vector() (in module

leap_ec.executable_rep.cgp), 162
create_individual()

(leap_ec.representation.Representation
method), 280

create_int_vector() (in module
leap_ec.int_rep.initializers), 173

create_population() (leap_ec.individual.Individual
class method), 244

create_population()
(leap_ec.representation.Representation
method), 280

create_real_vector() (in module
leap_ec.real_rep.initializers), 191

create_segmented_sequence() (in module
leap_ec.segmented_rep.initializers), 234

Crossover (class in leap_ec.ops), 247
crowding_distance_calc() (in module

leap_ec.multiobjective.ops), 183
cyclic_selection() (in module leap_ec.ops), 251

296 Index

LEAP: Library for Evolutionary Algorithms in Python Documentation, Release v0.9dev

D
dataframe (leap_ec.probe.AttributesCSVProbe prop-

erty), 263
DeceptiveTrap (class in leap_ec.binary_rep.problems),

148
decode() (leap_ec.binary_rep.decoders.BinaryToIntDecoder

method), 145
decode() (leap_ec.binary_rep.decoders.BinaryToIntGreyDecoder

method), 146
decode() (leap_ec.binary_rep.decoders.BinaryToRealDecoderCommon

method), 146
decode() (leap_ec.decoder.Decoder method), 243
decode() (leap_ec.decoder.IdentityDecoder method),

243
decode() (leap_ec.executable_rep.cgp.CGPDecoder

method), 159
decode() (leap_ec.executable_rep.cgp.CGPWithParametersDecoder

method), 160
decode() (leap_ec.executable_rep.executable.WrapperDecoder

method), 163
decode() (leap_ec.executable_rep.neural_network.SimpleNeuralNetworkDecoder

method), 164
decode() (leap_ec.executable_rep.rules.PittRulesDecoder

method), 168
decode() (leap_ec.individual.Individual method), 245
decode() (leap_ec.segmented_rep.decoders.SegmentedDecoder

method), 234
Decoder (class in leap_ec.decoder), 242
default_a (leap_ec.real_rep.problems.LangermannProblem

attribute), 201
default_metric_cols

(leap_ec.probe.FitnessStatsCSVProbe at-
tribute), 270

deltas (leap_ec.landscape_features.exploratory.ELAConvexity
property), 179

dimensions (leap_ec.real_rep.problems.QuadraticFamilyProblem
property), 214

DistributedIndividual (class in
leap_ec.distrib.individual), 154

E
ea_solve() (in module leap_ec.simple), 280
ELAConvexity (class in

leap_ec.landscape_features.exploratory),
177

elitist_survival() (in module leap_ec.ops), 251
enlu_inds_rank() (in module

leap_ec.multiobjective.asynchronous), 180
ENLUInserter (class in

leap_ec.multiobjective.asynchronous), 180
EnvironmentProblem (class in

leap_ec.executable_rep.problems), 165
equals_gaussian() (in module

leap_ec.statistical_helpers), 282

equals_uniform() (in module
leap_ec.statistical_helpers), 282

equivalent() (leap_ec.multiobjective.problems.MultiObjectiveProblem
method), 185

equivalent() (leap_ec.problem.AlternatingProblem
method), 274

equivalent() (leap_ec.problem.AverageFitnessProblem
method), 275

equivalent() (leap_ec.problem.CooperativeProblem
method), 277

equivalent() (leap_ec.problem.Problem method), 279
equivalent() (leap_ec.problem.ScalarProblem

method), 279
eval_pool() (in module leap_ec.distrib.synchronous),

156
eval_population() (in module

leap_ec.distrib.asynchronous), 152
eval_population() (in module

leap_ec.distrib.synchronous), 156
evaluate() (in module leap_ec.distrib.evaluate), 153
evaluate() (in module leap_ec.ops), 252
evaluate() (leap_ec.binary_rep.problems.DeceptiveTrap

method), 148
evaluate() (leap_ec.binary_rep.problems.ImageProblem

method), 148
evaluate() (leap_ec.binary_rep.problems.LeadingOnes

method), 149
evaluate() (leap_ec.binary_rep.problems.MaxOnes

method), 149
evaluate() (leap_ec.binary_rep.problems.TwoMax

method), 149
evaluate() (leap_ec.executable_rep.problems.EnvironmentProblem

method), 165
evaluate() (leap_ec.executable_rep.problems.ImageXYProblem

method), 166
evaluate() (leap_ec.executable_rep.problems.TruthTableProblem

method), 166
evaluate() (leap_ec.individual.Individual method), 245
evaluate() (leap_ec.individual.RobustIndividual

method), 245
evaluate() (leap_ec.multiobjective.problems.SCHProblem

method), 187
evaluate() (leap_ec.multiobjective.problems.ZDT1Problem

method), 187
evaluate() (leap_ec.multiobjective.problems.ZDT2Problem

method), 188
evaluate() (leap_ec.multiobjective.problems.ZDT3Problem

method), 189
evaluate() (leap_ec.multiobjective.problems.ZDT4Problem

method), 189
evaluate() (leap_ec.multiobjective.problems.ZDT5Problem

method), 190
evaluate() (leap_ec.multiobjective.problems.ZDT6Problem

method), 191

Index 297

LEAP: Library for Evolutionary Algorithms in Python Documentation, Release v0.9dev

evaluate() (leap_ec.problem.AlternatingProblem
method), 274

evaluate() (leap_ec.problem.AverageFitnessProblem
method), 275

evaluate() (leap_ec.problem.ConstantProblem
method), 275

evaluate() (leap_ec.problem.CooperativeProblem
method), 277

evaluate() (leap_ec.problem.ExternalProcessProblem
method), 277

evaluate() (leap_ec.problem.FitnessOffsetProblem
method), 278

evaluate() (leap_ec.problem.FunctionProblem
method), 278

evaluate() (leap_ec.problem.Problem method), 279
evaluate() (leap_ec.real_rep.problems.AckleyProblem

method), 194
evaluate() (leap_ec.real_rep.problems.CosineFamilyProblem

method), 195
evaluate() (leap_ec.real_rep.problems.GaussianProblem

method), 198
evaluate() (leap_ec.real_rep.problems.GriewankProblem

method), 199
evaluate() (leap_ec.real_rep.problems.LangermannProblem

method), 201
evaluate() (leap_ec.real_rep.problems.LunacekProblem

method), 203
evaluate() (leap_ec.real_rep.problems.MatrixTransformedProblem

method), 205
evaluate() (leap_ec.real_rep.problems.NoisyQuarticProblem

method), 208
evaluate() (leap_ec.real_rep.problems.ParabaloidProblem

method), 209
evaluate() (leap_ec.real_rep.problems.QuadraticFamilyProblem

method), 214
evaluate() (leap_ec.real_rep.problems.RastriginProblem

method), 215
evaluate() (leap_ec.real_rep.problems.RosenbrockProblem

method), 218
evaluate() (leap_ec.real_rep.problems.ScaledProblem

method), 218
evaluate() (leap_ec.real_rep.problems.SchwefelProblem

method), 219
evaluate() (leap_ec.real_rep.problems.ShekelProblem

method), 220
evaluate() (leap_ec.real_rep.problems.SpheroidProblem

method), 222
evaluate() (leap_ec.real_rep.problems.StepProblem

method), 223
evaluate() (leap_ec.real_rep.problems.TranslatedProblem

method), 225
evaluate() (leap_ec.real_rep.problems.WeierstrassProblem

method), 228
evaluate_imp() (leap_ec.individual.Individual

method), 245
evaluate_imp() (leap_ec.individual.WholeEvaluatedIndividual

method), 246
evaluate_multiple()

(leap_ec.problem.AverageFitnessProblem
method), 275

evaluate_multiple()
(leap_ec.problem.CooperativeProblem
method), 277

evaluate_multiple()
(leap_ec.problem.ExternalProcessProblem
method), 278

evaluate_multiple() (leap_ec.problem.Problem
method), 279

evaluate_population()
(leap_ec.individual.Individual class method),
245

EvaluatorLogFilter (class in leap_ec.distrib.logger),
155

Executable (class in leap_ec.executable_rep.executable),
162

export() (leap_ec.contrib.transfer.sequential.PopulationSeedingRepertoire
method), 150

ExternalProcessProblem (class in leap_ec.problem),
277

F
fast_nondominated_sort() (in module

leap_ec.multiobjective.ops), 184
filter() (leap_ec.distrib.logger.EvaluatorLogFilter

method), 155
FitnessOffsetProblem (class in leap_ec.problem),

278
FitnessPlotProbe (class in leap_ec.probe), 265
FitnessStatsCSVProbe (class in leap_ec.probe), 267
FunctionPrimitive (class in

leap_ec.executable_rep.cgp), 160
FunctionProblem (class in leap_ec.problem), 278

G
GaussianProblem (class in leap_ec.real_rep.problems),

195
GENERALITY (leap_ec.executable_rep.rules.PittRulesExecutable.PriorityMetric

attribute), 172
generalized_nsga_2() (in module

leap_ec.multiobjective.nsga2), 182
generate() (leap_ec.real_rep.problems.QuadraticFamilyProblem

class method), 215
generate_image() (leap_ec.executable_rep.problems.ImageXYProblem

static method), 166
generational_ea() (in module leap_ec.algorithm),

237
genome_mutate_binomial() (in module

leap_ec.int_rep.ops), 174

298 Index

LEAP: Library for Evolutionary Algorithms in Python Documentation, Release v0.9dev

genome_mutate_bitflip() (in module
leap_ec.binary_rep.ops), 147

genome_mutate_gaussian() (in module
leap_ec.real_rep.ops), 192

genome_to_rules() (leap_ec.executable_rep.rules.PittRulesDecoder
method), 169

get_current_problem()
(leap_ec.problem.AlternatingProblem method),
274

get_input_sources()
(leap_ec.executable_rep.cgp.CGPDecoder
method), 159

get_output_sources()
(leap_ec.executable_rep.cgp.CGPDecoder
method), 159

get_primitive() (leap_ec.executable_rep.cgp.CGPDecoder
method), 159

get_row_dict() (leap_ec.probe.AttributesCSVProbe
method), 263

get_step() (in module leap_ec.util), 284
graph (leap_ec.executable_rep.neural_network.SimpleNeuralNetworkExecutable

property), 164
GraphPhenotypeProbe (class in

leap_ec.executable_rep.neural_network),
163

greedy_insert_into_pop() (in module
leap_ec.distrib.asynchronous), 152

GriewankProblem (class in leap_ec.real_rep.problems),
198

grouped_evaluate() (in module leap_ec.ops), 252

H
HeatMapPhenotypeProbe (class in leap_ec.probe), 270
HistPhenotypePlotProbe (class in leap_ec.probe),

270

I
IdentityDecoder (class in leap_ec.decoder), 243
ImageProblem (class in leap_ec.binary_rep.problems),

148
ImageXYProblem (class in

leap_ec.executable_rep.problems), 166
inc_births() (in module leap_ec.util), 284
inc_generation() (in module leap_ec.util), 285
Individual (class in leap_ec.individual), 244
individual_mutate_randint() (in module

leap_ec.int_rep.ops), 174
initialize() (leap_ec.executable_rep.cgp.CGPWithParametersDecoder

method), 160
initialize_seeded() (in module

leap_ec.contrib.transfer.sequential), 151
initializer() (leap_ec.executable_rep.cgp.CGPDecoder

method), 159

initializer() (leap_ec.executable_rep.rules.PittRulesDecoder
method), 169

insertion_selection() (in module leap_ec.ops), 253
is_flat() (in module leap_ec.util), 285
is_iterable() (in module leap_ec.util), 285
is_sequence() (in module leap_ec.util), 285
is_viable() (in module leap_ec.distrib.evaluate), 154
iteriter_op() (in module leap_ec.ops), 253
iterlist_op() (in module leap_ec.ops), 253

K
key_press() (leap_ec.executable_rep.executable.KeyboardExecutable

method), 163
key_release() (leap_ec.executable_rep.executable.KeyboardExecutable

method), 163
KeyboardExecutable (class in

leap_ec.executable_rep.executable), 162
koza_parsimony() (in module leap_ec.parsimony), 260

L
LangermannProblem (class in

leap_ec.real_rep.problems), 201
LeadingOnes (class in leap_ec.binary_rep.problems),

148
leap_ec

module, 286
leap_ec.algorithm

module, 237
leap_ec.binary_rep

module, 150
leap_ec.binary_rep.decoders

module, 145
leap_ec.binary_rep.initializers

module, 146
leap_ec.binary_rep.ops

module, 147
leap_ec.binary_rep.problems

module, 148
leap_ec.contrib

module, 151
leap_ec.contrib.transfer

module, 151
leap_ec.contrib.transfer.sequential

module, 150
leap_ec.data

module, 242
leap_ec.decoder

module, 242
leap_ec.distrib

module, 157
leap_ec.distrib.asynchronous

module, 152
leap_ec.distrib.evaluate

module, 153

Index 299

LEAP: Library for Evolutionary Algorithms in Python Documentation, Release v0.9dev

leap_ec.distrib.individual
module, 154

leap_ec.distrib.logger
module, 155

leap_ec.distrib.probe
module, 155

leap_ec.distrib.synchronous
module, 156

leap_ec.executable_rep
module, 173

leap_ec.executable_rep.cgp
module, 157

leap_ec.executable_rep.executable
module, 162

leap_ec.executable_rep.neural_network
module, 163

leap_ec.executable_rep.problems
module, 165

leap_ec.executable_rep.rules
module, 167

leap_ec.global_vars
module, 244

leap_ec.individual
module, 244

leap_ec.int_rep
module, 177

leap_ec.int_rep.initializers
module, 173

leap_ec.int_rep.ops
module, 174

leap_ec.landscape_features
module, 180

leap_ec.landscape_features.exploratory
module, 177

leap_ec.multiobjective
module, 191

leap_ec.multiobjective.asynchronous
module, 180

leap_ec.multiobjective.nsga2
module, 182

leap_ec.multiobjective.ops
module, 183

leap_ec.multiobjective.probe
module, 185

leap_ec.multiobjective.problems
module, 185

leap_ec.ops
module, 246

leap_ec.parsimony
module, 260

leap_ec.probe
module, 261

leap_ec.problem
module, 274

leap_ec.real_rep
module, 233

leap_ec.real_rep.initializers
module, 191

leap_ec.real_rep.ops
module, 192

leap_ec.real_rep.problems
module, 193

leap_ec.representation
module, 280

leap_ec.segmented_rep
module, 237

leap_ec.segmented_rep.decoders
module, 233

leap_ec.segmented_rep.initializers
module, 234

leap_ec.segmented_rep.ops
module, 235

leap_ec.simple
module, 280

leap_ec.statistical_helpers
module, 282

leap_ec.util
module, 283

leap_logger_name (in module leap_ec), 286
lexical_parsimony() (in module leap_ec.parsimony),

260
linear_deviation() (leap_ec.landscape_features.exploratory.ELAConvexity

method), 179
linear_deviation_abs()

(leap_ec.landscape_features.exploratory.ELAConvexity
method), 179

linear_p() (leap_ec.landscape_features.exploratory.ELAConvexity
method), 180

listiter_op() (in module leap_ec.ops), 253
listlist_op() (in module leap_ec.ops), 253
log_pop() (in module leap_ec.distrib.probe), 155
log_worker_location() (in module

leap_ec.distrib.probe), 156
LunacekProblem (class in leap_ec.real_rep.problems),

201

M
MatrixTransformedProblem (class in

leap_ec.real_rep.problems), 203
MaxOnes (class in leap_ec.binary_rep.problems), 149
migrate() (in module leap_ec.ops), 254
migration_metric() (in module leap_ec.ops), 255
module

leap_ec, 286
leap_ec.algorithm, 237
leap_ec.binary_rep, 150
leap_ec.binary_rep.decoders, 145
leap_ec.binary_rep.initializers, 146

300 Index

LEAP: Library for Evolutionary Algorithms in Python Documentation, Release v0.9dev

leap_ec.binary_rep.ops, 147
leap_ec.binary_rep.problems, 148
leap_ec.contrib, 151
leap_ec.contrib.transfer, 151
leap_ec.contrib.transfer.sequential, 150
leap_ec.data, 242
leap_ec.decoder, 242
leap_ec.distrib, 157
leap_ec.distrib.asynchronous, 152
leap_ec.distrib.evaluate, 153
leap_ec.distrib.individual, 154
leap_ec.distrib.logger, 155
leap_ec.distrib.probe, 155
leap_ec.distrib.synchronous, 156
leap_ec.executable_rep, 173
leap_ec.executable_rep.cgp, 157
leap_ec.executable_rep.executable, 162
leap_ec.executable_rep.neural_network,

163
leap_ec.executable_rep.problems, 165
leap_ec.executable_rep.rules, 167
leap_ec.global_vars, 244
leap_ec.individual, 244
leap_ec.int_rep, 177
leap_ec.int_rep.initializers, 173
leap_ec.int_rep.ops, 174
leap_ec.landscape_features, 180
leap_ec.landscape_features.exploratory,

177
leap_ec.multiobjective, 191
leap_ec.multiobjective.asynchronous, 180
leap_ec.multiobjective.nsga2, 182
leap_ec.multiobjective.ops, 183
leap_ec.multiobjective.probe, 185
leap_ec.multiobjective.problems, 185
leap_ec.ops, 246
leap_ec.parsimony, 260
leap_ec.probe, 261
leap_ec.problem, 274
leap_ec.real_rep, 233
leap_ec.real_rep.initializers, 191
leap_ec.real_rep.ops, 192
leap_ec.real_rep.problems, 193
leap_ec.representation, 280
leap_ec.segmented_rep, 237
leap_ec.segmented_rep.decoders, 233
leap_ec.segmented_rep.initializers, 234
leap_ec.segmented_rep.ops, 235
leap_ec.simple, 280
leap_ec.statistical_helpers, 282
leap_ec.util, 283

multi_population_ea() (in module
leap_ec.algorithm), 238

MultiObjectiveProblem (class in
leap_ec.multiobjective.problems), 185

mutate_binomial() (in module leap_ec.int_rep.ops),
174

mutate_bitflip() (in module leap_ec.binary_rep.ops),
147

mutate_gaussian() (in module leap_ec.real_rep.ops),
192

mutate_randint() (in module leap_ec.int_rep.ops),
176

mutator() (leap_ec.executable_rep.rules.PittRulesDecoder
method), 169

N
naive_cyclic_selection() (in module leap_ec.ops),

256
NAND (class in leap_ec.executable_rep.cgp), 161
NAryCrossover (class in leap_ec.ops), 247
NoisyQuarticProblem (class in

leap_ec.real_rep.problems), 207
NotX (class in leap_ec.executable_rep.cgp), 161
num_basins (leap_ec.real_rep.problems.QuadraticFamilyProblem

property), 215
num_cgp_nodes() (leap_ec.executable_rep.cgp.CGPDecoder

method), 159
num_fixated_metric() (in module leap_ec.probe),

272
num_genes() (leap_ec.executable_rep.cgp.CGPDecoder

method), 159
num_genes_per_rule (leap_ec.executable_rep.rules.PittRulesDecoder

property), 170
num_hidden_layers (leap_ec.executable_rep.neural_network.SimpleNeuralNetworkExecutable

property), 164
num_inputs (leap_ec.executable_rep.neural_network.SimpleNeuralNetworkExecutable

property), 165
num_inputs (leap_ec.executable_rep.problems.EnvironmentProblem

property), 165
num_inputs (leap_ec.executable_rep.rules.PittRulesDecoder

property), 170
num_memory_registers

(leap_ec.executable_rep.rules.PittRulesDecoder
property), 171

num_outputs (leap_ec.executable_rep.neural_network.SimpleNeuralNetworkExecutable
property), 165

num_outputs (leap_ec.executable_rep.problems.EnvironmentProblem
property), 165

num_outputs (leap_ec.executable_rep.rules.PittRulesDecoder
property), 171

O
Operator (class in leap_ec.ops), 248

P
pairs (leap_ec.landscape_features.exploratory.ELAConvexity

Index 301

LEAP: Library for Evolutionary Algorithms in Python Documentation, Release v0.9dev

property), 180
pairwise_squared_distance_metric() (in module

leap_ec.probe), 273
ParabaloidProblem (class in

leap_ec.real_rep.problems), 209
ParetoPlotProbe2D (class in

leap_ec.multiobjective.probe), 185
per_rank_crowding_calc() (in module

leap_ec.multiobjective.ops), 184
PERIMETER (leap_ec.executable_rep.rules.PittRulesExecutable.PriorityMetric

attribute), 172
phenome (leap_ec.individual.Individual property), 245
phenome_length (leap_ec.multiobjective.problems.ZDT5Problem

property), 190
PittRulesDecoder (class in

leap_ec.executable_rep.rules), 167
PittRulesExecutable (class in

leap_ec.executable_rep.rules), 171
PittRulesExecutable.PriorityMetric (class in

leap_ec.executable_rep.rules), 172
plot_2d_contour() (in module

leap_ec.real_rep.problems), 229
plot_2d_function() (in module

leap_ec.real_rep.problems), 229
plot_2d_problem() (in module

leap_ec.real_rep.problems), 231
PlotPittRuleProbe (class in

leap_ec.executable_rep.rules), 172
points (leap_ec.real_rep.problems.ShekelProblem at-

tribute), 220
pool() (in module leap_ec.ops), 256
PopulationMetricsPlotProbe (class in

leap_ec.probe), 270
PopulationSeedingRepertoire (class in

leap_ec.contrib.transfer.sequential), 150
Primitive (class in leap_ec.executable_rep.cgp), 161
print_individual() (in module leap_ec.probe), 273
print_list() (in module leap_ec.util), 286
print_population() (in module leap_ec.probe), 273
print_probe() (in module leap_ec.probe), 273
Problem (class in leap_ec.problem), 278
proportional_selection() (in module leap_ec.ops),

256
prune_graph() (leap_ec.executable_rep.cgp.CGPDecoder

static method), 159

Q
QuadraticFamilyProblem (class in

leap_ec.real_rep.problems), 212

R
random() (in module leap_ec.binary_rep.ops), 147
random() (in module leap_ec.real_rep.problems), 233

random() (leap_ec.real_rep.problems.TranslatedProblem
class method), 225

random_bernoulli_vector() (in module
leap_ec.ops), 257

random_orthonormal()
(leap_ec.real_rep.problems.MatrixTransformedProblem
class method), 206

random_orthonormal_matrix() (in module
leap_ec.real_rep.problems), 233

random_search() (in module leap_ec.algorithm), 240
random_selection() (in module leap_ec.ops), 257
RandomExecutable (class in

leap_ec.executable_rep.executable), 163
rank_ordinal_sort() (in module

leap_ec.multiobjective.ops), 184
RastriginProblem (class in

leap_ec.real_rep.problems), 215
recombine() (leap_ec.ops.Crossover method), 247
recombine() (leap_ec.ops.NAryCrossover method), 248
recombine() (leap_ec.ops.UniformCrossover method),

249
relu() (in module leap_ec.executable_rep.neural_network),

165
remove_segment() (in module

leap_ec.segmented_rep.ops), 236
Repertoire (class in leap_ec.contrib.transfer.sequential),

151
replace_if() (in module

leap_ec.distrib.asynchronous), 152
Representation (class in leap_ec.representation), 280
reset() (leap_ec.multiobjective.probe.ParetoPlotProbe2D

method), 185
reset() (leap_ec.probe.PopulationMetricsPlotProbe

method), 270
results_table() (leap_ec.landscape_features.exploratory.ELAConvexity

method), 180
RobustIndividual (class in leap_ec.individual), 245
RosenbrockProblem (class in

leap_ec.real_rep.problems), 217
Rule (class in leap_ec.executable_rep.rules), 173
RULE_ORDER (leap_ec.executable_rep.rules.PittRulesExecutable.PriorityMetric

attribute), 172

S
ScalarProblem (class in leap_ec.problem), 279
ScaledProblem (class in leap_ec.real_rep.problems),

218
SCHProblem (class in leap_ec.multiobjective.problems),

185
SchwefelProblem (class in leap_ec.real_rep.problems),

218
segmented_mutate() (in module

leap_ec.segmented_rep.ops), 236

302 Index

LEAP: Library for Evolutionary Algorithms in Python Documentation, Release v0.9dev

SegmentedDecoder (class in
leap_ec.segmented_rep.decoders), 233

setup() (leap_ec.distrib.logger.WorkerLoggerPlugin
method), 155

setup_logger() (leap_ec.distrib.logger.WorkerLoggerPlugin
method), 155

ShekelProblem (class in leap_ec.real_rep.problems),
219

sigmoid() (in module
leap_ec.executable_rep.neural_network),
165

SimpleNeuralNetworkDecoder (class in
leap_ec.executable_rep.neural_network),
163

SimpleNeuralNetworkExecutable (class in
leap_ec.executable_rep.neural_network),
164

softmax() (in module
leap_ec.executable_rep.neural_network),
165

sort_by_dominance() (in module
leap_ec.multiobjective.ops), 184

space_dimensions() (leap_ec.executable_rep.problems.EnvironmentProblem
static method), 165

SpheroidProblem (class in leap_ec.real_rep.problems),
220

steady_state() (in module
leap_ec.distrib.asynchronous), 152

steady_state_nsga_2() (in module
leap_ec.multiobjective.asynchronous), 181

StepProblem (class in leap_ec.real_rep.problems), 223
stochastic_chisquare() (in module

leap_ec.statistical_helpers), 282
stochastic_equals() (in module

leap_ec.statistical_helpers), 283
stop_at_generation() (in module leap_ec.algorithm),

241
sum_of_variances_metric() (in module

leap_ec.probe), 274
SumPhenotypePlotProbe (class in leap_ec.probe), 270
sus_selection() (in module leap_ec.ops), 258

T
teardown() (leap_ec.distrib.logger.WorkerLoggerPlugin

method), 155
time_col (leap_ec.probe.FitnessStatsCSVProbe at-

tribute), 270
tournament_insert_into_pop() (in module

leap_ec.distrib.asynchronous), 153
tournament_selection() (in module leap_ec.ops),

258
TranslatedProblem (class in

leap_ec.real_rep.problems), 225

truncation_selection() (in module leap_ec.ops),
259

TruthTableProblem (class in
leap_ec.executable_rep.problems), 166

TwoMax (class in leap_ec.binary_rep.problems), 149

U
UniformCrossover (class in leap_ec.ops), 248

W
WeierstrassProblem (class in

leap_ec.real_rep.problems), 226
WholeEvaluatedIndividual (class in

leap_ec.individual), 246
WorkerLoggerPlugin (class in leap_ec.distrib.logger),

155
worse_than() (leap_ec.multiobjective.problems.MultiObjectiveProblem

method), 185
worse_than() (leap_ec.problem.AlternatingProblem

method), 274
worse_than() (leap_ec.problem.AverageFitnessProblem

method), 275
worse_than() (leap_ec.problem.CooperativeProblem

method), 277
worse_than() (leap_ec.problem.Problem method), 279
worse_than() (leap_ec.problem.ScalarProblem

method), 279
worse_than() (leap_ec.real_rep.problems.NoisyQuarticProblem

method), 209
worse_than() (leap_ec.real_rep.problems.RastriginProblem

method), 215
worse_than() (leap_ec.real_rep.problems.RosenbrockProblem

method), 218
worse_than() (leap_ec.real_rep.problems.ShekelProblem

method), 220
worse_than() (leap_ec.real_rep.problems.SpheroidProblem

method), 223
worse_than() (leap_ec.real_rep.problems.StepProblem

method), 223
wrap_curry() (in module leap_ec.util), 286
WrapperDecoder (class in

leap_ec.executable_rep.executable), 163
write_comment() (leap_ec.probe.FitnessStatsCSVProbe

method), 270
write_header() (leap_ec.probe.FitnessStatsCSVProbe

method), 270

Z
ZDT1Problem (class in leap_ec.multiobjective.problems),

187
ZDT2Problem (class in leap_ec.multiobjective.problems),

187
ZDT3Problem (class in leap_ec.multiobjective.problems),

188

Index 303

LEAP: Library for Evolutionary Algorithms in Python Documentation, Release v0.9dev

ZDT4Problem (class in leap_ec.multiobjective.problems),
189

ZDT5Problem (class in leap_ec.multiobjective.problems),
189

ZDT6Problem (class in leap_ec.multiobjective.problems),
190

ZDTBenchmarkProblem (class in
leap_ec.multiobjective.problems), 191

304 Index

	Quickstart Guide
	Using LEAP
	Simple Example
	Genetic Algorithm Example
	More Examples

	Documentation
	Installing from Source
	Run the Test Suite

	Acknowledgements
	Citing LEAP

	LEAP Concepts
	Core Classes
	Operator Pipeline
	Detailed Explanations
	Individuals
	Class Summary
	RobustIndividual

	Class API

	Decoders
	Class Summary
	Class API
	Decoder
	IdentityDecoder
	BinaryToIntDecoder
	BinaryToRealDecoderCommon
	BinaryToRealDecoder
	BinaryToIntGreyDecoder
	BinaryToRealGreyDecoder

	Representations
	Binary representations
	Real-valued representations
	Integer representations
	Segmented representations
	Mixed representations
	Representation convenience class

	Problems
	Class Summary
	Class API
	Binary Problems API
	Real-value Problems API

	Pipeline Operators
	Overview
	Implementation Details
	Loose-coupling via generator functions
	Operators for collections of Individuals
	Currying Function Decorators
	Operator Class
	Table of Pipeline Operators
	Type-checking Decorator Functions

	API Documentation
	Base operator classes and representation agnostic functions
	Pipeline operators for binary representations
	Pipeline operators for real-valued representations
	Pipeline operators for segmented representations

	Context
	Probes
	Parsimony Pressure
	API

	Visualization
	Prebuilt Algorithms
	Tailored evolutionary algorithms
	Visualization Pipeline Operators
	Examples

	Prebuilt Algorithms
	ea_solve()
	Example

	generational_ea()
	Example

	Implementing Tailored Evolutionary Algorithms with LEAP
	Deciding on a suitable representation
	Decoders for binary representations
	Impact on representation on choice of pipeline operators
	LEAP supports three numeric representations
	Support for exotic representations

	Defining a Problem subclass
	Possibly defining or choosing a special Individual subclass
	Putting all that together
	Evolutionary algorithm examples

	Distributed LEAP
	Synchronous fitness evaluations
	Components
	Example
	Separate Examples

	Asynchronous fitness evaluations
	Example
	DistributedIndividual
	Separate Examples

	Multiobjective Optimization
	Using generalized_nsga_2
	Example

	Creating a tailored NSGA-II
	Example

	Representing multiple fitnesses
	Asynchronous steady-state multiobjective optimization
	References

	LEAP Cookbook
	Enforcing problem bounds constraints
	Bounds for initialization
	Enforcing bounds during mutation

	Common Problems
	min() returns the worst individual for minimization problems
	Missing pipeline operator arguments

	Roadmap
	leap_ec package
	Subpackages
	leap_ec.binary_rep package
	Submodules
	leap_ec.binary_rep.decoders module
	leap_ec.binary_rep.initializers module
	leap_ec.binary_rep.ops module
	leap_ec.binary_rep.problems module
	Module contents

	leap_ec.contrib package
	Subpackages
	leap_ec.contrib.transfer package
	Submodules
	leap_ec.contrib.transfer.sequential module
	Module contents

	Submodules
	leap_ec.contrib.analysis module
	Module contents

	leap_ec.distrib package
	Submodules
	leap_ec.distrib.asynchronous module
	leap_ec.distrib.evaluate module
	leap_ec.distrib.individual module
	leap_ec.distrib.logger module
	leap_ec.distrib.probe module
	leap_ec.distrib.synchronous module
	Module contents

	leap_ec.executable_rep package
	Submodules
	leap_ec.executable_rep.cgp module
	leap_ec.executable_rep.executable module
	leap_ec.executable_rep.neural_network module
	leap_ec.executable_rep.problems module
	leap_ec.executable_rep.rules module
	Module contents

	leap_ec.int_rep package
	Submodules
	leap_ec.int_rep.initializers module
	leap_ec.int_rep.ops module
	Module contents

	leap_ec.landscape_features package
	Submodules
	leap_ec.landscape_features.exploratory module
	Module contents

	leap_ec.multiobjective package
	Submodules
	leap_ec.multiobjective.asynchronous module
	leap_ec.multiobjective.nsga2 module
	leap_ec.multiobjective.ops module
	leap_ec.multiobjective.probe module
	leap_ec.multiobjective.problems module
	Module contents

	leap_ec.real_rep package
	Submodules
	leap_ec.real_rep.initializers module
	leap_ec.real_rep.ops module
	leap_ec.real_rep.problems module
	Module contents

	leap_ec.segmented_rep package
	Submodules
	leap_ec.segmented_rep.decoders module
	leap_ec.segmented_rep.initializers module
	leap_ec.segmented_rep.ops module
	Module contents

	Submodules
	leap_ec.algorithm module
	leap_ec.data module
	leap_ec.decoder module
	leap_ec.distrib module
	leap_ec.global_vars module
	leap_ec.individual module
	leap_ec.multiobjective module
	leap_ec.ops module
	leap_ec.parsimony module
	leap_ec.probe module
	leap_ec.problem module
	leap_ec.representation module
	leap_ec.simple module
	leap_ec.statistical_helpers module
	leap_ec.util module
	Module contents

	References
	Indices and tables
	Bibliography
	Python Module Index
	Index

