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CHAPTER

ONE

QUICKSTART GUIDE

LEAP: Evolutionary Algorithms in Python

Written by Dr. Jeffrey K. Bassett, Dr. Mark Coletti, and Eric Scott

LEAP is a general purpose Evolutionary Computation package that combines readable and easy-to-use syntax for
search and optimization algorithms with powerful distribution and visualization features.

LEAP’s signature is its operator pipeline, which uses a simple list of functional operators to concisely express a
metaheuristic algorithm’s configuration as high-level code. Adding metrics, visualization, or special features (like
distribution, coevolution, or island migrations) is often as simple as adding operators into the pipeline.

1.1 Using LEAP

Get the stable version of LEAP from the Python package index with

pip install leap_ec

1.1.1 Simple Example

The easiest way to use an evolutionary algorithm in LEAP is to use the leap_ec.simple package, which contains simple
interfaces for pre-built algorithms:

from leap_ec.simple import ea_solve

def f(x):
"""A real-valued function to be optimized."""
return sum(x)**2

ea_solve(f, bounds=[(-5.12, 5.12) for _ in range(5)], maximize=True)
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1.1.2 Genetic Algorithm Example

The next-easiest way to use LEAP is to configure a custom algorithm via one of the metaheuristic functions in the
leap_ec.algorithms package. These interfaces off you a flexible way to customize the various operators, representa-
tions, and other components that go into a modern evolutionary algorithm.

Here’s an example that applies a genetic algorithm variant to solve the MaxOnes optimization problem. It uses bitflip
mutation, uniform crossover, and binary tournament_selection selection:

from leap_ec.algorithm import generational_ea
from leap_ec.decoder import IdentityDecoder
from leap_ec.representation import Representation
from leap_ec.binary_rep.problems import MaxOnes
from leap_ec.binary_rep.initializers import create_binary_sequence
from leap_ec.binary_rep.ops import mutate_bitflip
pop_size = 5
ea = generational_ea(generations=100, pop_size=pop_size,

problem=MaxOnes(), # Solve a MaxOnes Boolean
→˓optimization problem

representation=Representation(
decoder=IdentityDecoder(), # Genotype and

→˓phenotype are the same for this task
initialize=create_binary_sequence(length=10) # Initial

→˓genomes are random binary sequences
),

# The operator pipeline
pipeline=[ops.tournament_selection, # Select

→˓parents via tournament_selection selection
ops.clone, # Copy them (just to

→˓be safe)
mutate_bitflip, # Basic mutation:

→˓defaults to a 1/L mutation rate
ops.uniform_crossover(p_swap=0.4), # Crossover with a 40

→˓% chance of swapping each gene
ops.evaluate, # Evaluate fitness
ops.pool(size=pop_size) # Collect offspring

→˓into a new population
])

print('Generation, Best_Individual')
for i, best in ea:

print(f"{i}, {best}")

1.1.3 More Examples

A number of LEAP demo applications are found in the the example directory of the github repository:

git clone https://github.com/AureumChaos/LEAP.git
python LEAP/example/island_models.py

Fig. 1: Demo of LEAP running a 3-population island model on a real-valued optimization problem.
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1.2 Documentation

The stable version of LEAP’s full documentation is over at ReadTheDocs

If you want to build a fresh set of docs for yourself, you can do so after running make setup:

make doc

This will create HTML documentation in the docs/build/html/ directory. It might take a while the first time, since
building the docs involves generating some plots and executing some example algorithms.

1.3 Installing from Source

To install a source distribution of LEAP, clone the repo:

git clone https://github.com/AureumChaos/LEAP.git

And use the Makefile to install the package:

make setup

1.3.1 Run the Test Suite

LEAP ships with a two-part pytest harness, divided into fast and slow tests. You can run them with

make test-fast

and

make test-slow

respectively.

Fig. 2: Example of healthy PyTest output.

1.2. Documentation 3
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1.4 Citing LEAP

BiBTeX:

@inproceedings{10.1145/3377929.3398147,
Address = {New York, NY, USA},
Author = {Coletti, Mark A. and Scott, Eric O. and Bassett, Jeffrey K.},
Booktitle = {Proceedings of the 2020 Genetic and Evolutionary Computation

→˓Conference Companion},
Doi = {10.1145/3377929.3398147},
Isbn = {9781450371278},
Keywords = {evolutionary algorithm, toolkit, software},
Location = {Canc\'{u}n, Mexico},
Numpages = {9},
Pages = {1571--1579},
Publisher = {Association for Computing Machinery},
Series = {GECCO '20},
Title = {Library for Evolutionary Algorithms in Python (LEAP)},
Url = {https://doi.org/10.1145/3377929.3398147},
Year = {2020}}

1.5 Acknowledgements

This effort used resources of the Oak Ridge Leadership Computing Facility for developing LEAP’s distributed evalua-
tion capability, and which is a DOE Office of Science User Facility supported under Contract DE-AC05-00OR22725.

We would also like to thank the Department of Energy’s Vehicle Technologies Office (VTO) for their funding support.
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CHAPTER

THREE

LEAP CONCEPTS

This section summarizes the main classes and the operator pipeline that use them.

3.1 Core Classes

Fig. 1: Figure 1: The core classes Individual, Problem, and Decoder are the three classes upon which the rest of the
toolkit rests.

Three classes work in tandem to represent and evaluate solutions: Individual, Problem, and Decoder. The relationship
between these classes is depicted in Figure 1, and shows that the Individual is the design’s keystone, and encapsu-
lates posed solutions to a Problem. Problem implements the semantics for a given problem to be solved, and which
Individual uses to compute its fitness. Problem also implements how any two given Individuals are “better than” or
“equivalent” to one another. The Decoder translates an Individuals genome into a phenome, or values meaningful to
the associated Problem for fitness evaluation; for example, a Decoder may translate a bit sequence into a vector of
real-values that are then passed to the Problem as parameters during evaluation.

3.2 Operator Pipeline

If the above classes are the “nouns” of LEAP, the pipeline operators are the “verbs” that work on those “nouns.”
The overarching concept of the pipeline is similar to *nix style text processing command lines, where a sequence of
operators pipe output of one text processing utility into the next one with the last one returning the final results. For
example:

> cut -d, -f 4,5,8 results.csv | head -4 | column -t -s,
birth_id scenario fitness
2 2 -23.2
1 14 6.0
0 36 31.0

This shows the output of cut is passed to head and the output of that is passed to the formatter column, which then
sends its output to stdout.

Here is an example of a LEAP pipeline:

gen = 0
while gen < max_generation:

offspring = toolz.pipe(parents,
ops.tournament_selection,

(continues on next page)
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(continued from previous page)

ops.clone,
mutate_bitflip,

ops.evaluate,
ops.pool(size=len(parents)))

parents = offspring
gen += 1

The above code snippet is an example of a very basic genetic algorithm implementation that uses a toolz.pipe() function
to link together a series of operators to do the following:

1. binary tournament_selection selection on a set of parents

2. clone those that were selected

3. perform mutation bitflip on the clones

4. evaluate the offspring

5. accumulate as many offspring as there are parents

Essentially the ops. functions are python co-routines that are driven by the last function, ops.pool() , that makes
requests of the upstream operators to fill a pool of offspring. Once the pool is filled, it is returned as the next set
of offspring, which are then assigned to become the parents for the next generation. (mutate_bitflip is in ops but
the one for binary representations; i.e., binary_rep/ops.py. And, since ops is already used, we just directly import
mutate_bitflip, which is why it does not have the ops qualifier.)

Fig. 2: Figure 2: LEAP operator pipeline. This figure depicts a typical LEAP operator pipeline. First is a parent
population from which the next operator selects individuals, which are then cloned by the next operator to be followed
by operators for mutating and evaluating the individual. (For brevity, a crossover operator was not included, but could
also have been freely inserted into this pipeline.) The pool operator is a sink for offspring, and drives the demand
for the upstream operators to repeatedly select, clone, mutate, and evaluate individuals repeatedly until the pool has
the desired number of offspring. Lastly, another selection operator returns the final set of individuals based on the
offspring pool and optionally the parents.

Fig. 2 depicts a general pattern of LEAP pipeline operators. Typically, the first pipeline element is a source for
individuals followed by some form of selection operator and then a clone operator to create an offspring that is initially
just a copy of the selected parent. Following that there are one or more pertubation operators, and though there is only
a mutation operator shown in the figure, there can be other configurations that also include crossover, among other
pertubation operators. Next, there is an operator to evaluate offspring as they come through pipeline where they are
collected by a pooling operator. And, lastly, there can be a survival selection operator to determine survivors for the
next generation, such as truncation selection. (The above code snippet does not have survival selection because it
replaces the parents with the offspring for every generation.)

8 Chapter 3. LEAP Concepts
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3.3 Detailed Explanations

More detailed explanations of the concepts shared here are given in the following sections.

3.3.1 Individuals

This section covers the class Individual in more detail.

Class Summary

Fig. 3: Figure 1: The `Individual` class This class diagram shows the detail for Individual. In additional to the
association with Decoder and ProbLem, each Individual has a genome and fitness. There are also several member
functions for cloning, decoding, and evaluating individuals. Not shown are such member functions as __repr__() and
__str__().

An Individual poses a unique instance of a solution to the associated Problem. Each Individual has a genome, which
contains state representing that posed solution. The genome can be a sequence or a matrix or a tree or some other data
structure, but in practice a genome is usually a binary or a real-value sequence. Every Individual is connected to an
associated Problem and relies on the Problem to evaluate its fitness and to compare itself with another Individual to
determine the better of the two.

The clone() method will create a duplicate of a given Individual; the new Individual gets a deep copy of the genome
and refers to the same Problem and Decoder. evaluate() calls evaluate_imp()`that, in turn, calls `decode()`to translate
the `genome into phenomes, or values meaningful to the Problem, and then passes those values to the Problem where
it returns a fitness. This fitness is then assigned to the Individual.

The reason for the indirection using evaluate_imp() is that evaluate_imp() allows sub-classes to pass ancillary infor-
mation to Problem during evaluation. For example, an Individual may have a UUID that the Problem needs in order
to create a file or sub-directory using that UUID. evaluate_imp() can be over-ridden in a sub-class to pass along the
UUID in addition to the decoded genome.

The @total_ordering class wrapper is used to expand the member functions __lt__() and __eq__() that are, in turn,
heavily used in sorting, selection, and comparison operators.

RobustIndividual

RobustIndividual is a sub-class of Individual that over-rides evaluate() to handle exceptions thrown during evaluation.
If no exceptions are thrown, then self.is_viable is set to True. If an exception happens, then the following occurs:

• self.is_viable is set to False

• self.fitness is set to math.nan

• self.exception is assigned the Exception object

In turn, this class has another sub-class leap_ec.distributed.individual.DistributedIndividual.

3.3. Detailed Explanations 9
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Class API

leap_ec.individual.Individual leap_ec.individual.RobustIndividual

class leap_ec.individual.Individual(genome, decoder=None, problem=None)
Represents a single solution to a Problem.

We represent an Individual by a genome and a fitness. Individual also maintains a reference to the Problem
it will be evaluated on, and an decoder, which defines how genomes are converted into phenomes for fitness
evaluation.

__init__(genome, decoder=None, problem=None)
Initialize an Individual with a given genome.

We also require Individual`s to maintain a reference to the `Problem:

>>> from leap_ec.binary_rep.problems import MaxOnes
>>> from leap_ec.decoder import IdentityDecoder
>>> ind = Individual([0, 0, 1, 0, 1], decoder=IdentityDecoder(),
→˓problem=MaxOnes())
>>> ind.genome
[0, 0, 1, 0, 1]

Fitness defaults to None:

>>> ind.fitness is None
True

Parameters

• genome – is the genome representing the solution. This can be any arbitrary type that
your mutation operators, probes, etc., know how to read and manipulate—a list, class, etc.

• decoder – is a function or callable that converts a genome into a phenome.

• problem – is the Problem associated with this individual.

clone()
Create a ‘clone’ of this Individual, copying the genome, but not fitness.

A deep copy of the genome will be created, so if your Individual has a custom genome type, it’s important
that it implements the __deepcopy__() method.

>>> from leap_ec.binary_rep.problems import MaxOnes
>>> from leap_ec.decoder import IdentityDecoder
>>> ind = Individual([0, 1, 1, 0], IdentityDecoder(), MaxOnes())
>>> ind_copy = ind.clone()
>>> ind_copy.genome == ind.genome
True
>>> ind_copy.problem == ind.problem
True

(continues on next page)
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(continued from previous page)

>>> ind_copy.decoder == ind.decoder
True

classmethod create_population(n, initialize, decoder, problem)
A convenience method for initializing a population of the appropriate subtype.

Parameters

• n – The size of the population to generate

• initialize – A function f(m) that initializes a genome

• decoder – The decoder to attach individuals to

• problem – The problem to attach individuals to

Returns A list of n individuals of this class’s (or subclass’s) type

decode(*args, **kwargs)

Returns the decoded value for this individual

evaluate()
determine this individual’s fitness

This is done by outsourcing the fitness evaluation to the associated Problem object since it “knows” what
is good or bad for a given phenome.

See also ScalarProblem.worse_than

Returns the calculated fitness

evaluate_imp()
This is the evaluate ‘implementation’ called by self.evaluate(). It’s intended to be optionally over-ridden
by sub-classes to give an opportunity to pass in ancillary data to the evaluate process either by tailoring the
problem interface or that of the given decoder.

classmethod evaluate_population(population)
Convenience function for bulk serial evaluation of a given population

Parameters population – to be evaluated

Returns evaluated population

class leap_ec.individual.RobustIndividual(genome, decoder=None, problem=None)
This adds exception handling for evaluations

After evaluation self.is_viable is set to True if all went well. However, if an exception is thrown during evalua-
tion, the following happens:

• self.is_viable is set to False

• self.fitness is set to math.nan

• self.exception is assigned the exception

evaluate()
determine this individual’s fitness

Note that if an exception is thrown during evaluation, the fitness is set to NaN and self.is_viable to False;
also, the returned exception is assigned to self.exception for possible later inspection. If the individual
was successfully evaluated, self.is_viable is set to true. NaN fitness values will figure into comparing
individuals in that NaN will always be considered worse than non-NaN fitness values.

Returns the calculated fitness

3.3. Detailed Explanations 11
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3.3.2 Decoders

This section covers `Decoder`s in more detail.

Class Summary

Fig. 4: Figure 1: The `Decoder` abstract-base class This class diagram shows the detail for Decoder, which is an
abstract base class (ABC). It has just a single abstract function, decode(), that is intended to be defined by subclasses.

The abstract-base class, Decoder has one function intended to be overridden by sub-classes, decode(), that returns
a phenome meaningful to a given Problem, which is usually a sequence of values. There are a number of supplied
Decoder classes mostly for converting binary strings into integers or real values.

Note that there is also support for Gray encoding. See BinarytoIntGrayDecoder and BinaryToRealGreyDecoder.

Class API

Decoder

abc.ABC leap_ec.decoder.Decoder

class leap_ec.decoder.Decoder

Decoders in LEAP implement how solutions to a problem are represented. Specifically, a Decoder con-
verts an Individual’s genotype (which is a format that can easily be manipulated by mutation and
recombination operators) into a phenotype (which is a format that can be fed directly into a Problem
object to obtain a fitness value).

Genotypes and phenotypes can be of arbitrary type, from a simple list of numbers to a complex data structure.
Choosing a good genotypic representation and genotype-to-phenotype mapping for a given problem domain is a
critical part of evolutionary algorithm design: the Decoder object that an algorithm uses can have a big impact
on the effectiveness of your metaheuristics.

In LEAP, a Decoder is typically used by Individual as an intermediate step in calculating its own fitness.

For example, say that we want to use a binary-represented Individual to solve a real-valued optimization
problem, such as SchwefelProblem. Here, the genotype is a vector of binary values, whereas the phenotype
is its corresponding float vector.

We can use a BinaryToIntDecoder to express this mapping. And when we initialize an individual, we give
it all three pieces of this information:

>>> from leap_ec.binary_rep.decoders import BinaryToRealDecoder
>>> from leap_ec.individual import Individual
>>> from leap_ec.real_rep.problems import SchwefelProblem
>>> genome = [0, 1, 1, 0, 1, 0, 1, 1]

(continues on next page)
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(continued from previous page)

>>> decoder = BinaryToRealDecoder((4, -5.12, 5.12), (4, -5.12, 5.12)) # Every 4
→˓bits map to a float on (-5.12, 5.12)
>>> ind = Individual(genome, decoder=decoder, problem=SchwefelProblem())

Now we can decode the individual to examine its phenotype:

>>> ind.decode()
[-1.024, 2.389333333333333]

This call is just a wrapper for the Decoder, which has the same output:

>>> decoder.decode(genome)
[-1.024, 2.389333333333333]

But now Individual also has everything it needs to evaluate its own fitness:

>>> ind.evaluate()
836.4453949...

Calling evaluate() also has the side effect of setting the fitness attribute:

>>> ind.fitness
836.4453949...

__init__()
Initialize self. See help(type(self)) for accurate signature.

abstract decode(genome, *args, **kwargs)

Parameters genome – a genome you wish to convert

Returns the phenotype associated with that genome

IdentityDecoder

abc.ABC leap_ec.decoder.Decoder leap_ec.decoder.IdentityDecoder

class leap_ec.decoder.IdentityDecoder
A decoder that maps a genome to itself. This acts as a ‘direct’ or ‘phenotypic’ encoding: Use this when your
genotype and phenotype are the same thing.

__init__()
Initialize self. See help(type(self)) for accurate signature.

decode(genome, *args, **kwargs)

Returns the input genome.

For example:

3.3. Detailed Explanations 13
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>>> d = IdentityDecoder()
>>> d.decode([0.5, 0.6, 0.7])
[0.5, 0.6, 0.7]

BinaryToIntDecoder

abc.ABC leap_ec.decoder.Decoder leap_ec.binary_rep.decoders.BinaryToIntDecoder

class leap_ec.binary_rep.decoders.BinaryToIntDecoder(*segments)
A decoder that converts a Boolean-vector genome into an integer-vector phenome.

__init__(*segments)
Constructs a decoder that will convert a binary representation into a corresponding int-value vector.

Parameters segments – is a sequence of integer that determine how the binary sequence is to
be broken up into chunks for interpretation

Returns a function for real-value phenome decoding of a sequence of binary digits

The segments parameter indicates the number of (genome) bits per ( phenome) dimension. For example,
if we construct the decoder

>>> d = BinaryToIntDecoder(4, 3)

then it will look for a genome of length 7, with the first 4 bits mapped to the first phenotypic value, and the
last 3 bits making up the second:

>>> d.decode([0,0,0,0,1,1,1])
[0, 7]

decode(genome, *args, **kwargs)
Converts a Boolean genome to an integer-vector phenome by interpreting each segment of the genome as
low-endian binary number.

Parameters genome – a list of 0s and 1s representing a Boolean genome

Returns a corresponding list of ints representing the integer-vector phenome

For example, a Boolean representation of [1, 12, 5] can be decoded like this:

>>> d = BinaryToIntDecoder(4, 4, 4)
>>> d.decode([0,0,0,1, 1, 1, 0, 0, 0, 1, 1, 0])
[1, 12, 6]

14 Chapter 3. LEAP Concepts
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BinaryToRealDecoderCommon

abc.ABC leap_ec.decoder.Decoder leap_ec.binary_rep.decoders.BinaryToRealDecoderCommon

class leap_ec.binary_rep.decoders.BinaryToRealDecoderCommon(*segments)
Common implementation for binary to real decoders.

The base classes BinaryToRealDecoder and BinaryToRealGreyDecoder differ by just the underlying binary to
integer decoder. Most all the rest of the binary integer to real-value decoding is the same, hence this class.

__init__(*segments)

Parameters segments – is a sequence of tuples of the form (number of bits, minimum, maxi-
mum) values

Returns a function for real-value phenome decoding of a sequence of binary digits

decode(genome, *args, **kwargs)
Convert a list of binary values into a real-valued vector.

BinaryToRealDecoder

class leap_ec.binary_rep.decoders.BinaryToRealDecoder(*segments)

__init__(*segments)
This returns a function that will convert a binary representation into a corresponding real-value vector.
The segments are a collection of tuples that indicate how many bits per segment, and the corresponding
real-value bounds for that segment.

Parameters segments – is a sequence of tuples of the form (number of bits, minimum, maxi-
mum) values

Returns a function for real-value phenome decoding of a sequence of binary digits

For example, if we construct the decoder then it will look for a genome of length 8, with the first 4 bits
mapped to the first phenotypic value, and the last 4 bits making up the second. The traits have a minimum
value of -5.12 (corresponding to 0000) and a maximum of 5.12 (corresponding to 1111):

>>> d = BinaryToRealDecoder((4, -5.12, 5.12),(4, -5.12, 5.12))
>>> d.decode([0, 0, 0, 0, 1, 1, 1, 1])
[-5.12, 5.12]

3.3. Detailed Explanations 15
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BinaryToIntGreyDecoder

abc.ABC leap_ec.decoder.Decoder leap_ec.binary_rep.decoders.BinaryToIntDecoder leap_ec.binary_rep.decoders.BinaryToIntGreyDecoder

class leap_ec.binary_rep.decoders.BinaryToIntGreyDecoder(*segments)
This performs Gray encoding when converting from binary strings.

See also: https://en.wikipedia.org/wiki/Gray_code#Converting_to_and_from_Gray_code

For example, a grey encoded Boolean representation of [1, 8, 4] can be decoded like this:

>>> d = BinaryToIntGreyDecoder(4, 4, 4)
>>> d.decode([0,0,0,1, 1, 1, 0, 0, 0, 1, 1, 0])
[1, 8, 4]

__init__(*segments)
Constructs a decoder that will convert a binary representation into a corresponding int-value vector.

Parameters segments – is a sequence of integer that determine how the binary sequence is to
be broken up into chunks for interpretation

Returns a function for real-value phenome decoding of a sequence of binary digits

The segments parameter indicates the number of (genome) bits per ( phenome) dimension. For example,
if we construct the decoder

>>> d = BinaryToIntDecoder(4, 3)

then it will look for a genome of length 7, with the first 4 bits mapped to the first phenotypic value, and the
last 3 bits making up the second:

>>> d.decode([0,0,0,0,1,1,1])
[0, 7]

decode(genome, *args, **kwargs)
Converts a Boolean genome to an integer-vector phenome by interpreting each segment of the genome as
low-endian binary number.

Parameters genome – a list of 0s and 1s representing a Boolean genome

Returns a corresponding list of ints representing the integer-vector phenome

For example, a Boolean representation of [1, 12, 5] can be decoded like this:

>>> d = BinaryToIntDecoder(4, 4, 4)
>>> d.decode([0,0,0,1, 1, 1, 0, 0, 0, 1, 1, 0])
[1, 12, 6]
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BinaryToRealGreyDecoder

abc.ABC leap_ec.decoder.Decoder leap_ec.binary_rep.decoders.BinaryToRealDecoderCommon leap_ec.binary_rep.decoders.BinaryToRealGreyDecoder

class leap_ec.binary_rep.decoders.BinaryToRealGreyDecoder(*segments)

__init__(*segments)
This returns a function that will convert a binary representation into a corresponding real-value vector.
The segments are a collection of tuples that indicate how many bits per segment, and the corresponding
real-value bounds for that segment.

Parameters segments – is a sequence of tuples of the form (number of bits, minimum, max-
imum) values :return: a function for real-value phenome decoding of a sequence of binary
digits

For example, if we construct the decoder then it will look for a genome of length 8, with the first 4 bits
mapped to the first phenotypic value, and the last 4 bits making up the second. The traits have a minimum
value of -5.12 (corresponding to 0000) and a maximum of 5.12 (corresponding to 1111):

>>> d = BinaryToRealGreyDecoder((4, -5.12, 5.12),(4, -5.12, 5.12))
>>> d.decode([0, 0, 0, 0, 1, 1, 1, 1])
[-5.12, 1.706666666666666]

3.3.3 Representations

3.3.4 Problems

This section covers Problem classes in more detail.

Class Summary

Fig. 5: Figure 1: The `Problem` abstract-base class This class diagram shows the detail for Problem, which is an
abstract base class (ABC). It has three abstract methods that must be over-ridden by subclasses. evaluate() takes a
phenome from an individual and compute a fitness from that. worse_than() and equivalent() compare fitnesses from
two different individuals and, as the name suggests, respectively returns the worst of the two or the equivalent within
the Problem context.

As shown in Fig. 1, the Problem`abstract-base class has three abstract methods. `evaluate() takes a phenome that
was decode()d from an Individual’s genome, and returns a value denoting the quality, or fitness, of that individual.
Problems are also used to compare the fitnesses between Individuals. worse_than() returns true if the first individual
is less fit than the second. Similarly, equivalent() is used to determine if two given fitnesses are effectively the same.
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Class API

abc.ABC leap_ec.problem.Problem

leap_ec.problem.ConstantProblem

leap_ec.problem.ScalarProblem

leap_ec.problem.FunctionProblem

Defines the abstract-base classes Problem, ScalarProblem, and FunctionProblem.

class leap_ec.problem.ConstantProblem(maximize=False, c=1.0)
A flat landscape, where all phenotypes have the same fitness.

This is sometimes useful for sanity checks or as a control in certain kinds of research.

𝑓(𝑥⃗) = 𝑐

Parameters c (float) – the fitness value to return for any input.

from leap_ec.problem import ConstantProblem
from leap_ec.real_rep.problems import plot_2d_problem
bounds = ConstantProblem.bounds
plot_2d_problem(ConstantProblem(), xlim=bounds, ylim=bounds, granularity=0.025)

bounds = (-1.0, 1.0)

evaluate(phenome, *args, **kwargs)
Return a contant value for any input phenome:

>>> phenome = [0.5, 0.8, 1.5]
>>> ConstantProblem().evaluate(phenome)
1.0

>>> ConstantProblem(c=500.0).evaluate('foo bar')
500.0

Parameters phenome – real-valued vector to be evaluated

Returns 1.0, or the constant defined in the constructor

class leap_ec.problem.FunctionProblem(fitness_function, maximize)

evaluate(phenome, *args, **kwargs)
Decode and evaluate the given individual based on its genome.

Practitioners must over-ride this member function.

Note that by default the individual comparison operators assume a maximization problem; if this is a
minimization problem, then just negate the value when returning the fitness.

Parameters phenome –

Returns fitness
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class leap_ec.problem.Problem
Abstract Base Class used to define problem definitions.

A Problem is in charge of two major parts of an EA’s behavior:

1. Fitness evaluation (the evaluate() method)

2. Fitness comparision (the worse_than() and equivalent() methods)

abstract equivalent(first_fitness, second_fitness)

abstract evaluate(phenome, *args, **kwargs)
Decode and evaluate the given individual based on its genome.

Practitioners must over-ride this member function.

Note that by default the individual comparison operators assume a maximization problem; if this is a
minimization problem, then just negate the value when returning the fitness.

Parameters phenome –

Returns fitness

abstract worse_than(first_fitness, second_fitness)

class leap_ec.problem.ScalarProblem(maximize)

equivalent(first_fitness, second_fitness)
Used in Individual.__eq__().

By default returns first.fitness== second.fitness. Please over-ride if this does not hold for your problem.

Returns true if the first individual is equal to the second

worse_than(first_fitness, second_fitness)
Used in Individual.__lt__().

By default returns first_fitness < second_fitness if a maximization problem, else first_fitness > sec-
ond_fitness if a minimization problem. Please over-ride if this does not hold for your problem.

Returns true if the first individual is less fit than the second

Binary Problems API

abc.ABC leap_ec.problem.Problem

leap_ec.binary_rep.problems.ImageProblem

leap_ec.problem.ScalarProblem

leap_ec.binary_rep.problems.MaxOnes

A set of standard EA problems that rely on a binary-representation

class leap_ec.binary_rep.problems.ImageProblem(path, maximize=True, size=100, 100)
A variation on max_ones that uses an external image file to define a binary target pattern.

evaluate(phenome)
Decode and evaluate the given individual based on its genome.

Practitioners must over-ride this member function.
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Note that by default the individual comparison operators assume a maximization problem; if this is a
minimization problem, then just negate the value when returning the fitness.

Parameters phenome –

Returns fitness

class leap_ec.binary_rep.problems.MaxOnes(maximize=True)
Implementation of MAX ONES problem where the individuals are represented by a bit vector

We don’t need an encoder since the raw genome is already in the phenotypic space.

evaluate(phenome)

>>> from leap_ec.individual import Individual
>>> from leap_ec.decoder import IdentityDecoder
>>> p = MaxOnes()
>>> ind = Individual([0, 0, 1, 1, 0, 1, 0, 1, 1],
... decoder=IdentityDecoder(),
... problem=p)
>>> p.evaluate(ind.decode())
5
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Real-value Problems API

abc.ABC leap_ec.problem.Problem leap_ec.problem.ScalarProblem

leap_ec.real_rep.problems.AckleyProblem

leap_ec.real_rep.problems.CosineFamilyProblem

leap_ec.real_rep.problems.GaussianProblem

leap_ec.real_rep.problems.GriewankProblem

leap_ec.real_rep.problems.LangermannProblem

leap_ec.real_rep.problems.LunacekProblem

leap_ec.real_rep.problems.MatrixTransformedProblem

leap_ec.real_rep.problems.NoisyQuarticProblem

leap_ec.real_rep.problems.RastriginProblem

leap_ec.real_rep.problems.RosenbrockProblem

leap_ec.real_rep.problems.ScaledProblem

leap_ec.real_rep.problems.SchwefelProblem

leap_ec.real_rep.problems.ShekelProblem

leap_ec.real_rep.problems.SpheroidProblem

leap_ec.real_rep.problems.StepProblem

leap_ec.real_rep.problems.TranslatedProblem

leap_ec.real_rep.problems.WeierstrassProblem

This module contains a variety of classic real-valued optimization problems that frequently occur in research bench-
marks.

It also contains helpers for translating, rotating, and visualizing them.

class leap_ec.real_rep.problems.AckleyProblem(a=20, b=0.2, c=6.283185307179586,
maximize=False)

𝑓(x) = −𝑎 exp

(︃
−𝑏

√︂
1

𝑑

𝑑∑︁
𝑖=1

𝑥2
𝑖

)︃
− exp

(︃
1

𝑑

𝑑∑︁
𝑖=1

cos(𝑐𝑥𝑖)

)︃
+ 𝑎+ exp(1)

Parameters

• a (float) – depth parameter for the bowl-shaped macrostructure

• b (float) – exponential scale parameter for the bowl

• c (float) – wavenumber (frequency) of the cosine pattern of local optima

• maximize (bool) – the function is maximized if True, else minimized.
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from leap_ec.real_rep.problems import AckleyProblem, plot_2d_problem
import math
problem = AckleyProblem(a=20, b=0.2, c=2*math.pi)
bounds = AckleyProblem.bounds # Contains traditional bounds
plot_2d_problem(problem, xlim=bounds, ylim=bounds, granularity=0.25)
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bounds = [-32.768, 32.768]

evaluate(phenome)
Computes the function value from a real-valued phenome.

Parameters phenome – real-valued vector to be evaluated

Returns its fitness.

class leap_ec.real_rep.problems.CosineFamilyProblem(alpha, global_optima_counts,
local_optima_counts, maxi-
mize=False)

A configurable multi-modal function based on combinations of cosines, taken from the problem generators
proposed in

[Jani2008]

𝑓cos(x) =

∑︀𝑛
𝑖=1 − cos((𝐺𝑖 − 1)2𝜋𝑥𝑖)− 𝛼 · cos((𝐺𝑖 − 1)2𝜋𝐿− 𝑖𝑥𝑦)

2𝑛

where 𝐺𝑖 and 𝐿𝑖 are parameters that indicate the number of global and local optima, respectively, in the ith
dimension.
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Parameters

• alpha (float) – parameter that controls the depth of the local optima.

• global_optima_counts ([int]) – list of integers indicating the number of global
optima for each dimension.

• local_optima_counts ([int]) – list of integers indicated the number of local optima
for each dimension.

• maximize – the function is maximized if True, else minimized.

from leap_ec.real_rep.problems import CosineFamilyProblem, plot_2d_problem
problem = CosineFamilyProblem(alpha=1.0, global_optima_counts=[2, 2], local_
→˓optima_counts=[2, 2])
bounds = CosineFamilyProblem.bounds # Contains traditional bounds
plot_2d_problem(problem, xlim=bounds, ylim=bounds, granularity=0.025)
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The number of optima can be varied independently by each dimension:

from leap_ec.real_rep.problems import CosineFamilyProblem, plot_2d_problem
problem = CosineFamilyProblem(alpha=3.0, global_optima_counts=[4, 2], local_
→˓optima_counts=[2, 2])
bounds = CosineFamilyProblem.bounds # Contains traditional bounds
plot_2d_problem(problem, xlim=bounds, ylim=bounds, granularity=0.025)

bounds = (0, 1)
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evaluate(phenome)
Computes the function value from a real-valued phenome.

Parameters phenome – real-valued vector to be evaluated

Returns its fitness.

class leap_ec.real_rep.problems.GaussianProblem(width=1, height=1, maximize=True)
A multidimensional, isotropic Gaussian function, defined by

𝐴 exp

(︃
−

𝑛∑︁
𝑖

(︁𝑥𝑖

𝑤

)︁2)︃
Parameters

• width (float) – the width parameter 𝑤

• height (float) – the height parameter 𝐴

from leap_ec.real_rep.problems import GaussianProblem, plot_2d_problem
bounds = GaussianProblem.bounds # Some typical bounds
problem = GaussianProblem(width=1, height=1)
plot_2d_problem(problem, xlim=bounds, ylim=bounds, granularity=0.1)
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bounds = (-3, 3)

evaluate(phenome)
Decode and evaluate the given individual based on its genome.
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Practitioners must over-ride this member function.

Note that by default the individual comparison operators assume a maximization problem; if this is a
minimization problem, then just negate the value when returning the fitness.

Parameters phenome –

Returns fitness

class leap_ec.real_rep.problems.GriewankProblem(maximize=False)
The classic Griewank problem. Like the RastriginProblem function, the Griewank has a quadratic global
structure with many local optima that are distributed in a regular pattern.

𝑓(x) =

𝑑∑︁
𝑖=1

𝑥2
𝑖

4000
−

𝑑∏︁
𝑖=1

cos

(︂
𝑥𝑖√
𝑖

)︂
+ 1

Parameters maximize (bool) – the function is maximized if True, else minimized.

from leap_ec.real_rep.problems import GriewankProblem, plot_2d_problem
bounds = GriewankProblem.bounds # Contains traditional bounds
plot_2d_problem(GriewankProblem(), xlim=bounds, ylim=bounds, granularity=10)
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from leap_ec.real_rep.problems import GriewankProblem, plot_2d_problem
bounds = [-50, 50]
plot_2d_problem(GriewankProblem(), xlim=bounds, ylim=bounds, granularity=1)
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bounds = [-600, 600]

evaluate(phenome)
Computes the function value from a real-valued phenome.

Parameters phenome – real-valued vector to be evaluated

Returns its fitness.

class leap_ec.real_rep.problems.LangermannProblem(m=5, c=1, 2, 5, 2, 3, a=3, 5, 5, 2, 2,
1, 1, 4, 7, 9, maximize=False)

A popular multi-modal test function built by summing together 𝑚 terms.

𝑓(x) = −
𝑚∑︁
𝑖=1

𝑐𝑖 exp

⎛⎝− 1

𝜋

𝑑∑︁
𝑗=1

(𝑥𝑗 −𝐴𝑖𝑗)
2

⎞⎠ cos

⎛⎝𝜋

𝑑∑︁
𝑗=1

(𝑥𝑗 −𝐴𝑖𝑗)
2

⎞⎠
Langermann’s function is parameterized by a vector 𝑐𝑖 of length 𝑚 and a matrix 𝐴𝑖𝑗 of dimension 𝑚× 𝑑. This
class uses the traditional parameterization as the default, with 𝑚 = 5 and

𝑐 = (1, 2, 5, 2, 3)

𝐴 =

⎡⎢⎢⎢⎢⎣
3 5
5 2
2 1
1 4
7 9

⎤⎥⎥⎥⎥⎦ .

Parameters

• m (int) – total number of terms in the function’s sum

• c ([float]) – amplitude coefficients for each term

• a ([[float]]) – offsets points for each term

• maximize (bool) – the function is maximized if True, else minimized.

from leap_ec.real_rep.problems import LangermannProblem, plot_2d_problem
bounds = LangermannProblem.bounds # Contains traditional bounds
plot_2d_problem(LangermannProblem(), xlim=bounds, ylim=bounds, granularity=0.2)

bounds = [0, 10]

default_a = ((3, 5), (5, 2), (2, 1), (1, 4), (7, 9))

evaluate(phenome)
Computes the function value from a real-valued phenome.

Parameters phenome – real-valued vector to be evaluated

Returns its fitness.

class leap_ec.real_rep.problems.LunacekProblem(N, d=1.0, mu_1=2.5, mu_2=None,
s=None, maximize=False)

Lunacek’s function is also know as the “double Rastrigin” or “bi-Rastrigin” problem, because it overlays a
RastriginProblem-style cosine function across a pair of spheroid functions.

This function was designed to model the double-funnel macrostructure that occurs in some difficult cases of the
Lennard-Jones function (a famous function from molecular dynamics).

𝑓(x) = min

(︃{︃
𝑁∑︁
𝑖=1

(𝑥𝑖 − 𝜇1)
2

}︃
,

{︃
𝑑 ·𝑁 + 𝑠 ·

𝑁∑︁
𝑖=1

(𝑥𝑖 − 𝜇2)
2

}︃)︃
+ 10

𝑁∑︁
𝑖=1

(1− cos(2𝜋(𝑥𝑖 − 𝜇𝑖))),
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where 𝑁 is the dimensionality of the solution vector, and the second sphere center parameter 𝜇2 is typically
given by

𝜇2 = −
√︂

𝜇2
1 − 𝑑

𝑠

and 𝑠 is by default a function on 𝑁 :

𝑠 = 1− 1

2
√
𝑁 + 20− 8.2

These respective defaults are used for 𝜇2 and 𝑠 whenever mu_2 and s are set to None.

Because of these complicated defaults, this class requires that you explicitly set the dimensionality of 𝑁 of the
expected input solutions. A warning will be thrown if an input solution is encountered that doesn’t match the
expected dimensionality.

Parameters

• N (int) – dimensionality of the anticipated input solutions

• d (float) – base fitness value of the second spheroid

• mu_1 (float) – offset of the first spheroid

• mu_2 (float) – offset of the second spheroid (if None, this will be calculated automati-
cally)

• s (float) – scale parameter for the second spheroid (if None, this will be calculated auto-
matically)

• maximize (bool) – the function is maximized if True, else minimized.

from leap_ec.real_rep.problems import LunacekProblem, plot_2d_problem
bounds = LunacekProblem.bounds # Contains traditional bounds
plot_2d_problem(LunacekProblem(N=2), xlim=bounds, ylim=bounds, granularity=0.1)

bounds = (-5, 5)

evaluate(phenome)
Computes the function value from a real-valued phenome.

Parameters phenome – real-valued vector to be evaluated

Returns its fitness.

class leap_ec.real_rep.problems.MatrixTransformedProblem(problem, matrix, maxi-
mize=None)

Apply a linear transformation to a fitness function.

Parameters matrix – an nxn matrix, where n is the genome length.

Returns a function that first applies -matrix to the input, then applies fun to the transformed input.

For example, here we manually construct a 2x2 rotation matrix and apply it to the leap.
RosenbrockProblem function:

from matplotlib import pyplot as plt
from leap_ec.real_rep.problems import RosenbrockProblem, MatrixTransformedProblem,
→˓ plot_2d_problem

original_problem = RosenbrockProblem()
theta = np.pi/2

(continues on next page)
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(continued from previous page)

matrix = [[np.cos(theta), -np.sin(theta)], [np.sin(theta), np.
→˓cos(theta)]]

transformed_problem = MatrixTransformedProblem(original_problem, matrix)

fig = plt.figure(figsize=(12, 8))

plt.subplot(221, projection='3d')
bounds = RosenbrockProblem.bounds # Contains traditional bounds
plot_2d_problem(original_problem, xlim=bounds, ylim=bounds, ax=plt.gca(),
→˓granularity=0.025)

plt.subplot(222, projection='3d')
plot_2d_problem(transformed_problem, xlim=bounds, ylim=bounds, ax=plt.gca(),
→˓granularity=0.025)

plt.subplot(223)
plot_2d_problem(original_problem, kind='contour', xlim=bounds, ylim=bounds,
→˓ax=plt.gca(), granularity=0.025)

plt.subplot(224)
plot_2d_problem(transformed_problem, kind='contour', xlim=bounds, ylim=bounds,
→˓ax=plt.gca(), granularity=0.025)
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evaluate(phenome)
Evaluated the fitness of a point on the transformed fitness landscape.

For example, consider a sphere function whose global optimum is situated at (0, 1):
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>>> s = TranslatedProblem(SpheroidProblem(), offset=[0, 1])
>>> round(s.evaluate([0, 1]), 5)
0

Now let’s take a rotation matrix that transforms the space by pi/2 radians:

>>> import numpy as np
>>> theta = np.pi/2
>>> matrix = [[np.cos(theta), -np.sin(theta)], [np.
→˓sin(theta), np.cos(theta)]]
>>> r = MatrixTransformedProblem(s, matrix)

The rotation has moved the new global optimum to (1, 0)

>>> round(r.evaluate([1, 0]), 5)
0.0

The point (0, 1) lies at a distance of sqrt(2) from the new optimum, and has a fitness of 2:

>>> round(r.evaluate([0, 1]), 5)
2.0

classmethod random_orthonormal(problem, dimensions, maximize=None)
Create a MatrixTransformedProblem that performs a random rotation and/or inversion of the func-
tion.

We accomplish this by generating a random orthonormal basis for R^n and plugging the resulting matrix
into MatrixTransformedProblem.

The classic algorithm we use here is based on the Gramm-Schmidt process: we first generate a set of
random vectors, and then convert them into an orthonormal basis. This approach is described in Hansen
and Ostermeier’s original CMA-ES paper:

“Completely derandomized self-adaptation in evolution strategies.” Evolutionary Computation 9.2 (2001):
159-195.

Parameters

• problem – the original ScalarProblem to apply the transform to.

• dimensions (int) – the number of elements each vector should have.

• maximize (bool) – whether to maximize or minimize the resulting fitness function.
Defaults to whatever setting the underlying problem uses.

from matplotlib import pyplot as plt
from leap_ec.real_rep.problems import CosineFamilyProblem,
→˓MatrixTransformedProblem, plot_2d_problem

original_problem = CosineFamilyProblem(alpha=1.0, global_optima_counts=[2, 3],
→˓ local_optima_counts=[2, 3])

transformed_problem = MatrixTransformedProblem.random_orthonormal(original_
→˓problem, 2)

fig = plt.figure(figsize=(12, 8))

plt.subplot(221, projection='3d')
bounds = original_problem.bounds

(continues on next page)
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(continued from previous page)

plot_2d_problem(original_problem, xlim=bounds, ylim=bounds, ax=plt.gca(),
→˓granularity=0.025)

plt.subplot(222, projection='3d')
plot_2d_problem(transformed_problem, xlim=bounds, ylim=bounds, ax=plt.gca(),
→˓granularity=0.025)

plt.subplot(223)
plot_2d_problem(original_problem, kind='contour', xlim=bounds, ylim=bounds,
→˓ax=plt.gca(), granularity=0.025)

plt.subplot(224)
plot_2d_problem(transformed_problem, kind='contour', xlim=bounds, ylim=bounds,
→˓ ax=plt.gca(), granularity=0.025)
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class leap_ec.real_rep.problems.NoisyQuarticProblem(maximize=False)
The classic ‘quadratic quartic’ function with Gaussian noise:

𝑓(x) =

𝑛∑︁
𝑖=1

𝑖𝑥4
𝑖 + gauss(0, 1)

Parameters maximize (bool) – the function is maximized if True, else minimized.

from leap_ec.real_rep.problems import NoisyQuarticProblem, plot_2d_problem
bounds = NoisyQuarticProblem.bounds # Contains traditional bounds
plot_2d_problem(NoisyQuarticProblem(), xlim=bounds, ylim=bounds, granularity=0.
→˓025)
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bounds = (-1.28, 1.28)

evaluate(phenome)
Computes the function value from a real-valued list phenome (the output varies, since the function has
noise):

>>> phenome = [3.5, -3.8, 5.0]
>>> r = NoisyQuarticProblem().evaluate(phenome)
>>> print(f'Result: {r}')
Result: ...

Parameters phenome – real-valued vector to be evaluated

Returns its fitness

worse_than(first_fitness, second_fitness)
We minimize by default:

>>> s = NoisyQuarticProblem()
>>> s.worse_than(100, 10)
True

>>> s = NoisyQuarticProblem(maximize=True)
>>> s.worse_than(100, 10)
False

class leap_ec.real_rep.problems.RastriginProblem(a=1.0, maximize=False)
The classic Rastrigin problem. The Rastrigin provides a real-valued fitness landscape with a quadratic global
structure (like the SpheroidProblem), plus a sinusoidal local structure with many local optima.

𝑓(𝑥⃗) = 𝐴𝑛+

𝑛∑︁
𝑖=1

𝑥2
𝑖 −𝐴 cos(2𝜋𝑥𝑖)

Parameters maximize (bool) – the function is maximized if True, else minimized.

from leap_ec.real_rep.problems import RastriginProblem, plot_2d_problem
bounds = RastriginProblem.bounds # Contains traditional bounds
plot_2d_problem(RastriginProblem(), xlim=bounds, ylim=bounds, granularity=0.025)

bounds = (-5.12, 5.12)

evaluate(phenome)
Computes the function value from a real-valued list phenome:

>>> phenome = [1.0/12, 0]
>>> RastriginProblem().evaluate(phenome) # +doctest: ELLIPSIS
0.1409190406...

Parameters phenome – real-valued vector to be evaluated

Returns its fitness

worse_than(first_fitness, second_fitness)
We minimize by default:

>>> s = NoisyQuarticProblem()
>>> s.worse_than(100, 10)
True
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>>> s = NoisyQuarticProblem(maximize=True)
>>> s.worse_than(100, 10)
False

class leap_ec.real_rep.problems.RosenbrockProblem(maximize=False)
The classic RosenbrockProblem problem, a.k.a. the “banana” or “valley” function.

𝑓(x) =

𝑑−1∑︁
𝑖=1

[︀
100(𝑥𝑖+1 − 𝑥2

𝑖 )
2 + (𝑥𝑖 − 1)2

]︀
Parameters maximize (bool) – the function is maximized if True, else minimized.

from leap_ec.real_rep.problems import RosenbrockProblem, plot_2d_problem
bounds = RosenbrockProblem.bounds # Contains traditional bounds
plot_2d_problem(RosenbrockProblem(), xlim=bounds, ylim=bounds, granularity=0.025)
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bounds = (-2.048, 2.048)

evaluate(phenome)
Computes the function value from a real-valued list phenome:

>>> phenome = [0.5, -0.2, 0.1]
>>> RosenbrockProblem().evaluate(phenome)
22.3

3.3. Detailed Explanations 39



LEAP: Library for Evolutionary Algorithms in Python Documentation, Release version 0.4.0

Parameters phenome – real-valued vector to be evaluated

Returns its fitness

worse_than(first_fitness, second_fitness)
We minimize by default:

>>> s = NoisyQuarticProblem()
>>> s.worse_than(100, 10)
True

>>> s = NoisyQuarticProblem(maximize=True)
>>> s.worse_than(100, 10)
False

class leap_ec.real_rep.problems.ScaledProblem(problem, new_bounds, maximize=None)
Scale the search space of a fitness function up or down.

evaluate(phenome)
Decode and evaluate the given individual based on its genome.

Practitioners must over-ride this member function.

Note that by default the individual comparison operators assume a maximization problem; if this is a
minimization problem, then just negate the value when returning the fitness.

Parameters phenome –

Returns fitness

class leap_ec.real_rep.problems.SchwefelProblem(alpha=418.982887, maximize=False)
Schwefel’s function is another traditional multimodal test function whose local optima are distributed in a
slightly irregular way, and whose global optimum is out at the edge of the search space (with no gently sloping
macrostructure to guide the algorithm toward it).

Compare this to the RastriginProblem function, whose global optimum lies at the center of a quadratic
bowl with a regular grid of local optima.

𝑓(x) =

𝑑∑︁
𝑖=1

(︁
−𝑥𝑖 · sin

(︁√︀
‖𝑥𝑖‖

)︁)︁
+ 𝛼 · 𝑑

Parameters

• alpha (float) – fitness offset (the default value ensures that the global optimum has zero
fitness)

• maximize (bool) – the function is maximized if True, else minimized.

from leap_ec.real_rep.problems import SchwefelProblem, plot_2d_problem
bounds = SchwefelProblem.bounds # Contains traditional bounds
plot_2d_problem(SchwefelProblem(), xlim=bounds, ylim=bounds, granularity=10)

bounds = (-512, 512)

evaluate(phenome)
Computes the function value from a real-valued phenome.

Parameters phenome – real-valued vector to be evaluated

Returns its fitness.
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class leap_ec.real_rep.problems.ShekelProblem(k=500, c=array([1, 2, 3, 4, 5, 6, 7, 8, 9,
10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20,
21, 22, 23, 24, 25]), maximize=False)

The classic ‘Shekel’s foxholes’ function.

𝑓(x) =
1

1
𝐾 +

∑︀25
𝑗=1

1
𝑓𝑗(x)

where

𝑓𝑗(x) = 𝑐𝑗 +

2∑︁
𝑖=1

(𝑥𝑖 − 𝑎𝑖𝑗)
6

and the points {(𝑎1𝑗 , 𝑎2𝑗)}25𝑗=1 define the functions various optima, and are given by the following hardcoded
matrix:

[𝑎𝑖𝑗 ] =

[︂
−32 −16 0 16 32 −32 −16 · · · 0 16 32
−32 −32 −32 −32 −32 −16 −16 · · · 32 32 32

]︂
.

Parameters

• k (int) – the value of 𝐾 in the fitness function.

• c ([int]) – list of values for the function’s 𝑐𝑗 parameters. Each c[j] approximately corre-
sponds to the depth of the jth foxhole.

• maximize (bool) – the function is maximized if True, else minimized.

• maximize – the function is maximized if True, else minimized.

from leap_ec.real_rep.problems import ShekelProblem, plot_2d_problem
bounds = ShekelProblem.bounds # Contains traditional bounds
plot_2d_problem(ShekelProblem(), xlim=bounds, ylim=bounds, granularity=0.9)

bounds = (-65.536, 65.536)

evaluate(phenome)
Computes the function value from a real-valued list phenome (the output varies, since the function has
noise).

Parameters phenome – real-valued to be evaluated

Returns its fitness

points = array([[-32, -16, 0, 16, 32, -32, -16, 0, 16, 32, -32, -16, 0, 16, 32, -32, -16, 0, 16, 32, -32, -16, 0, 16, 32], [-32, -32, -32, -32, -32, -16, -16, -16, -16, -16, 0, 0, 0, 0, 0, 16, 16, 16, 16, 16, 32, 32, 32, 32, 32]])

worse_than(first_fitness, second_fitness)
We minimize by default:

>>> s = ShekelProblem()
>>> s.worse_than(100, 10)
True

>>> s = ShekelProblem(maximize=True)
>>> s.worse_than(100, 10)
False

class leap_ec.real_rep.problems.SpheroidProblem(maximize=False)
Classic paraboloid function, known as the “sphere” or “spheroid” problem, because its equal-fitness contours
form (hyper)spheres in n > 2.

𝑓(𝑥⃗) =

𝑛∑︁
𝑖

𝑥2
𝑖
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Parameters maximize (bool) – the function is maximized if True, else minimized.

from leap_ec.real_rep.problems import SpheroidProblem, plot_2d_problem
bounds = SpheroidProblem.bounds # Contains traditional bounds
plot_2d_problem(SpheroidProblem(), xlim=bounds, ylim=bounds, granularity=0.025)
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bounds = (-5.12, 5.12)

evaluate(phenome)
Computes the function value from a real-valued list phenome:

>>> phenome = [0.5, 0.8, 1.5]
>>> SpheroidProblem().evaluate(phenome)
3.14

Parameters phenome – real-valued vector to be evaluated

Returns it’s fitness, sum(phenome**2)

worse_than(first_fitness, second_fitness)
We minimize by default:

>>> s = NoisyQuarticProblem()
>>> s.worse_than(100, 10)
True
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>>> s = NoisyQuarticProblem(maximize=True)
>>> s.worse_than(100, 10)
False

class leap_ec.real_rep.problems.StepProblem(maximize=True)
The classic ‘step’ function—a function with a linear global structure, but with stair-like plateaus at the local
level.

𝑓(x) =

𝑛∑︁
𝑖=1

⌊𝑥𝑖⌋

where ⌊𝑥⌋ denotes the floor function.

Parameters maximize (bool) – the function is maximized if True, else minimized.

from leap_ec.real_rep.problems import StepProblem, plot_2d_problem
bounds = StepProblem.bounds # Contains traditional bounds
plot_2d_problem(StepProblem(), xlim=bounds, ylim=bounds, granularity=0.025)
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bounds = (-5.12, 5.12)

evaluate(phenome)
Computes the function value from a real-valued list phenome:
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>>> phenome = [3.5, -3.8, 5.0]
>>> StepProblem().evaluate(phenome)
4.0

Parameters phenome – real-valued vector to be evaluated

Returns its fitness

worse_than(first_fitness, second_fitness)
We maximize by default:

>>> s = StepProblem()
>>> s.worse_than(100, 10)
False

>>> s = StepProblem(maximize=False)
>>> s.worse_than(100, 10)
True

class leap_ec.real_rep.problems.TranslatedProblem(problem, offset, maximize=None)
Takes an existing fitness function and translates it by applying a fixed offset vector.

For example,

from matplotlib import pyplot as plt
from leap_ec.real_rep.problems import SpheroidProblem, TranslatedProblem, plot_2d_
→˓problem

original_problem = SpheroidProblem()
offset = [-1.0, -2.5]
translated_problem = TranslatedProblem(original_problem, offset)

fig = plt.figure(figsize=(12, 8))

plt.subplot(221, projection='3d')
bounds = SpheroidProblem.bounds # Contains traditional bounds
plot_2d_problem(original_problem, xlim=bounds, ylim=bounds, ax=plt.gca(),
→˓granularity=0.025)

plt.subplot(222, projection='3d')
plot_2d_problem(translated_problem, xlim=bounds, ylim=bounds, ax=plt.gca(),
→˓granularity=0.025)

plt.subplot(223)
plot_2d_problem(original_problem, kind='contour', xlim=bounds, ylim=bounds,
→˓ax=plt.gca(), granularity=0.025)

plt.subplot(224)
plot_2d_problem(translated_problem, kind='contour', xlim=bounds, ylim=bounds,
→˓ax=plt.gca(), granularity=0.025)

evaluate(phenome)
Evaluate the fitness of a point after translating the fitness function.

Translation can be used in higher than two dimensions:
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>>> offset = [-1.0, -1.0, 1.0, 1.0, -5.0]
>>> t_sphere = TranslatedProblem(SpheroidProblem(), offset)
>>> genome = [0.5, 2.0, 3.0, 8.5, -0.6]
>>> t_sphere.evaluate(genome)
90.86

classmethod random(problem, offset_bounds, dimensions, maximize=None)
Apply a random real-valued translation to a fitness function, sampled uniformly between min_offset and
max_offset in every dimension.

from leap_ec.real_rep.problems import RastriginProblem, plot_2d_problem

original_problem = RastriginProblem()
bounds = RastriginProblem.bounds # Contains traditional bounds
translated_problem = TranslatedProblem.random(original_problem, bounds, 2)

plot_2d_problem(translated_problem, kind='contour', xlim=bounds, ylim=bounds)

class leap_ec.real_rep.problems.WeierstrassProblem(kmax=20, a=0.5, b=3, maxi-
mize=False)

The Weierstrass function is famous for being the first discovered example of a function that is continuous, but
not differentiable. Built by adding the terms of a Fourier series, it has a jagged, self-similar structure:

𝑓(x) =

𝑑∑︁
𝑖=1

[︃
𝑘𝑚𝑎𝑥∑︁
𝑘=0

𝑎𝑘 cos
(︀
2𝜋𝑏𝑘(𝑥𝑖 + 0.5)

)︀
− 𝑛

𝑘𝑚𝑎𝑥∑︁
𝑘=0

𝑎𝑘 cos(𝜋𝑏𝑘)

]︃

When used in optimization benchmarks, it’s typical to carry out the Fourier sum to kmax=20 terms.
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Parameters

• kmax (int) – number of terms to carry the Fourier sum out to

• a (float) – amplitude parameter of the cosine terms

• b (float) – wavenumber (frequency) parameter of the cosine terms

• maximize (bool) – the function is maximized if True, else minimized.

from leap_ec.real_rep.problems import WeierstrassProblem, plot_2d_problem
bounds = WeierstrassProblem.bounds # Contains traditional bounds
plot_2d_problem(WeierstrassProblem(), xlim=bounds, ylim=bounds, granularity=0.01)
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evaluate(phenome)
Computes the function value from a real-valued phenome.

Parameters phenome – real-valued vector to be evaluated

Returns its fitness.

leap_ec.real_rep.problems.plot_2d_contour(fun, xlim, ylim, granularity, ax=None)
Convenience method for plotting contours for a function that accepts 2-D real-valued inputs and produces a 1-D
scalar output.

Parameters
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• fun (function) – The function to plot.

• xlim ((float, float)) – Bounds of the horizontal axes.

• ylim ((float, float)) – Bounds of the vertical axis.

• ax (Axes) – Matplotlib axes to plot to (if None, a new figure will be created).

• granularity (float) – Spacing of the grid to sample points along.

The difference between this and plot_2d_problem() is that this takes a raw function (instead of a
Problem object).

import numpy as np
from scipy import linalg

from leap_ec.real_rep.problems import plot_2d_contour

def sinc_hd(phenome):
r = linalg.norm(phenome)
return np.sin(r)/r

plot_2d_contour(sinc_hd, xlim=(-10, 10), ylim=(-10, 10), granularity=0.2)
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leap_ec.real_rep.problems.plot_2d_function(fun, xlim, ylim, granularity=0.1, ax=None)
Convenience method for plotting a function that accepts 2-D real-valued imputs and produces a 1-D scalar
output.
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Parameters

• fun (function) – The function to plot.

• xlim ((float, float)) – Bounds of the horizontal axes.

• ylim ((float, float)) – Bounds of the vertical axis.

• ax (Axes) – Matplotlib axes to plot to (if None, a new figure will be created).

• granularity (float) – Spacing of the grid to sample points along.

The difference between this and plot_2d_problem() is that this takes a raw function (instead of a
Problem object).

import numpy as np
from scipy import linalg

from leap_ec.real_rep.problems import plot_2d_function

def sinc_hd(phenome):
r = linalg.norm(phenome)
return np.sin(r)/r

plot_2d_function(sinc_hd, xlim=(-10, 10), ylim=(-10, 10), granularity=0.2)
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leap_ec.real_rep.problems.plot_2d_problem(problem, xlim, ylim, kind='surface', ax=None,
granularity=None)
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Convenience function for plotting a Problem that accepts 2-D real-valued phenomes and produces a 1-D scalar
fitness output.

Parameters

• fun (Problem) – The Problem to plot.

• xlim ((float, float)) – Bounds of the horizontal axes.

• ylim ((float, float)) – Bounds of the vertical axis.

• kind (str) – The kind of plot to create: ‘surface’ or ‘contour’

• ax (Axes) – Matplotlib axes to plot to (if None, a new figure will be created).

• granularity (float) – Spacing of the grid to sample points along. If none is given,
then the granularity will default to 1/50th of the range of the function’s bounds attribute.

The difference between this and plot_2d_function() is that this takes a Problem object (instead of a
raw function).

If no axes are specified, a new figure is created for the plot:

from leap_ec.real_rep.problems import CosineFamilyProblem, plot_2d_problem
problem = CosineFamilyProblem(alpha=1.0, global_optima_counts=[2, 2], local_
→˓optima_counts=[2, 2])
plot_2d_problem(problem, xlim=(0, 1), ylim=(0, 1), granularity=0.025);
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You can also specify axes explicitly (ex. by using ax=plt.gca(). When plotting surfaces, you must configure
your axes to use projection=’3d’. Contour plots don’t need 3D axes:

from matplotlib import pyplot as plt
from leap_ec.real_rep.problems import RastriginProblem, plot_2d_problem

fig = plt.figure(figsize=(12, 4))
bounds=RastriginProblem.bounds # Contains default bounds

plt.subplot(121, projection='3d')
plot_2d_problem(RastriginProblem(), ax=plt.gca(), xlim=bounds, ylim=bounds)

plt.subplot(122)
plot_2d_problem(RastriginProblem(), ax=plt.gca(), kind='contour', xlim=bounds,
→˓ylim=bounds)
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3.3.5 Pipeline Operators

Fig. 6: Figure 2: LEAP operator pipeline. This figure depicts a typical LEAP operator pipeline. First is a parent
population from which the next operator selects individuals, which are then cloned by the next operator to be followed
by operators for mutating and evaluating the individual. (For brevity, a crossover operator was not included, but could
also have been freely inserted into this pipeline.) The pool operator is a sink for offspring, and drives the demand
for the upstream operators to repeatedly select, clone, mutate, and evaluate individuals repeatedly until the pool has
the desired number of offspring. Lastly, another selection operator returns the final set of individuals based on the
offspring pool and optionally the parents.
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Overview

leap_ec.individual.Individual, leap_ec.problem.Problem, and leap_ec.decoder.
Decoder are passive classes that need an external framework to make them function. In LEAP Concepts the notion
of a pipeline of evolutionary algorithm (EA) operators that use these classes was introduced. That is, Individual,
Decoder, and Problem are the “nouns” and the pipeline operators a the verbs that operate on those nouns. The
operator pipeline objective is to create a new set of evaluated individuals from an existing set of prospective parents
that can be in a new set of prospective parents.

Fig.2 is shown again here to depict a typical set of LEAP pipeline operators. The pipeline generally starts with a
“sink”, or a parent population, from which the next operator typically selects for creating offspring. This is followed
by a clone operator that ensure the subsequent pertubation operators do not modify the selected parents. (And so it
is critically important that users always have a clone operator as a part of the offspring creation pipeline before any
mutation, crossover, or other genome altering operators.) The pertubation operators can be mutation or also include
a crossover operator. At this point in the pipeline we have a completed offspring with no fitness, so the next operator
evaluates the offspring to assign that fitness. Then the evaluated offspring is collected into a pool of offspring. Once
the offspring pool reaches a desired size it returns all the offspring to another selection operator to cull the offspring,
and optionally the parents, to return the next set of prospective parents.

Or, more explicitly:

1. Start with a collection of Individuals that are prospective parents

2. A selection operator for selecting one or more parents to begin the creation of a new offspring

3. A clone operator that makes a copy of the selected parents to ensure the following operators don’t overwrite
those parents

4. A set of mutation, crossover, or other operators that perturb the cloned individual’s genome, thus (hopefully)
giving the new offspring unique values

5. An operator to evaluate the new offspring

6. A pool that serves as a “sink” for evaluated offspring; this pool is sent to the next operator, or is returned from
the function, once the pool reaches a specified size

7. Another selection operator to cull the offspring (and optionally parents) to return a population of new prospective
parents

This is, the general sequence for most LEAP pipelines, but there will be the occasional variation on this theme. For ex-
ample, many of the provided “canned” algorithms take just snippets of an offspring creation pipeline. E.g., leap_ec.
distributed.asynchronous.steady_state() has an offspring_pipeline parameter that doesn’t have par-
ents explicitly as part of the pipeline; instead, for steady_state() it’s implied that the parents will be provided during
the run internally.

Implementation Details

The LEAP pipeline is implemented using the toolz.functoolz.pipe() function, which has arguments com-
prised of a collection of data followed by an arbitrary number of functions. When invoked the data is passed as an
argument to the first function, and the output of that function is fed as an argument to the next function — this re-
peats for the rest of the functions. The output of the last function is returned as the overall pipeline output. (See:
https://toolz.readthedocs.io/en/latest/api.html#toolz.functoolz.pipe )
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Loose-coupling via generator functions

The first “data” argument is a collection of Individuals representing prospective parents, which can be a sequence,
such as a list or tuple. The design philosophy for the operator functions that follow was to ensure they were as loosely
coupled as possible. This was achieved by implementing some operators as generator functions that accept iterators
as arguments. That way, new operators can be spliced into the pipeline and they’d automatically “hook up” to their
neighbors.

For example, consider the following snippet:

gen = 0
while gen < max_generation:

offspring = toolz.pipe(parents,
ops.tournament_selection,
ops.clone,

mutate_bitflip,
ops.evaluate,
ops.pool(size=len(parents)))

parents = offspring
gen += 1

The above code snippet is an example of a very basic genetic algorithm implementation that uses a toolz.pipe() function
to link together a series of operators to do the following:

1. binary tournament_selection selection on a set of parents

2. clone those that were selected

3. perform mutation bit-flip on the clones

4. evaluate the offspring

5. accumulate as many offspring as there are parents

Since we only have mutation in the pipeline, only one parent at a time is selected to be cloned to create an offspring.
However, let’s make one change to that pipeline by adding crossover:

gen = 0
while gen < max_generation:

offspring = toolz.pipe(parents,
ops.tournament_selection,
ops.clone,

mutate_bitflip,
ops.uniform_crossover, # NEW OPERATOR
ops.evaluate,
ops.pool(size=len(parents)))

parents = offspring
gen += 1

This does the following:

1. binary tournament_selection selection on a set of parents

2. clone those that were selected

3. perform mutation bitflip on the clones

4. perform uniform crossover between the two offspring

5. evaluate the offspring
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6. accumulate as many offspring as there are parents

Adding crossover means that now two parents are selected instead of one. However, note that the tournament_selection
selection operator wasn’t changed. It automatically selects two parents instead of one, as necessary.

Let’s take a closer look at uniform_crossover() (this is a simplified version; the actual code has more type checking
and docstrings).

def uniform_crossover(next_individual: Iterator,
p_swap: float = 0.5) -> Iterator:

def _uniform_crossover(ind1, ind2, p_swap):
for i in range(len(ind1.genome)):

if random.random() < p_swap:
ind1.genome[i], ind2.genome[i] = ind2.genome[i], ind1.genome[i]

return ind1, ind2

while True:
parent1 = next(next_individual)
parent2 = next(next_individual)

child1, child2 = _uniform_crossover(parent1, parent2, p_swap)

yield child1
yield child2

Note that the argument next_individual is an Iterator that “hooks up” to a previously yielded Individual from the
previous pipeline operator. The uniform_crossover operator doesn’t care how the previous Individual is made, it just
has a contract that when next() is invoked that it will get another Individual. And, since this is a generator function,
it yields the crossed-over Individuals. It also has two yield statements that ensures both crossed-over Individuals are
returned, thus eliminating a potential source of genetic drift by arbitrarily only yielding one and discarding the other.

Operators for collections of Individuals

There is another class of operators that work on collections of Individuals such as selection and pooling operators.
Generally:

selection pipeline operators accept a collection of Individuals and yield a selected Individual (and thus are generator
functions)

pooling operators accept an Iterator from which to get the next() Individual, and returns a collection of Individuals

Below shows an example of a selection operator, which is a simplified version of the tournament_selection() operator:

def tournament_selection(population: List, k: int = 2) -> Iterator:
while True:

choices = random.choices(population, k=k)
best = max(choices)

yield best

(Again, the actual leap_ec.ops.tournament_selection() has checks and docstrings.)

This depicts how a typical selection pipeline operator works. It accepts a population parameter (plus some optional
parameters), and yields the selected individual.

Below is example of a pooling operator:
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def pool(next_individual: Iterator, size: int) -> List:
return [next(next_individual) for _ in range(size)]

This accepts an Iterator from which it gets the next individual, and it uses that iterator to accumulate a specified
number of Individuals via a list comprehension. Once the desired number of Individuals is accumulated, the list of
those Individuals is returned.

Currying Function Decorators

Some pipeline operators have user-specified parameters. E.g., leap_ec.ops.pool() has the mandatory size
parameter. However, given that toolz.pipe() takes functions as parameters, how do we ensure that we pass in functions
that have set parameters?

Normally we would use the Standard Python Library’s functools.partial to set the function parameters and then pass
in the function returned from that call. However, toolz has a convenient function wrapper that does the same thing,
toolz.functools.curry. (See: https://toolz.readthedocs.io/en/latest/api.html#toolz.functoolz.curry ) Pipeline operators
that take on user-settable parameters are all wrapped with curry to allow functions with parameters set to be passed
into toolz.pipe().

Operator Class

Most of the pipeline operators are implemented as functions. However, from time to time an operator will need to
persist state between invocations. For generator functions, that comes with using yield in that the next time that
function is invoked the next individual is returned. However, there are some operators that use closures, such as
:py:func:leap_ec.ops.migrate.

In any case, sometimes if one wants persistent state in a pipeline operator a closure or using yield isn’t enough. In
which case, having a class that can have objects that persist state might be useful.

To that end, leap_ec.ops.Operator is an abstract base-class (ABC) that provides a template of sorts for those
kinds of classes. That is, you would write an Operator sub-class that provides a __call__() member function that
would allow objects of that class to be inserted into a LEAP pipeline just like any other operator. Presumably during
execution the internal object state would be continually be updated with book-keeping information as Individuals flow
through it in the pipeline.

leap_ec.ops.CooperativeEvaluate is an example of using this class.
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Table of Pipeline Operators

Representation Specificity Input -> Output Operator
Representation
Agnostic

Iterator → Iterator clone()
evaluate()
uniform_crossover()
n_ary_crossover()
CooperativeEvaluate

Iterator → population pool()
population → population truncation_selection()

const_evaluate()
insertion_selection()
migrate()

population → Iterator tournament_selection()
naive_cyclic_selection()
cyclic_selection()
random_selection()

Representation Dependent binary_rep Iterator → Iterator mutate_bitflip()
real_rep Iterator → Iterator mutate_gaussian()

Admittedly it can be confusing when considering the full suite of LEAP pipeline operators, especially in remembering
what kind of operators “connect” to what. With that in mind, the above table breaks down pipeline operators into
different categories. First, there are two broad categories of pipeline operators — operators that don’t care about the
internal representation of Individuals, or “Representation Agnostic” operators; and those operators that do depend
on the internal representation, or “Representation Dependent” operators. Most of the operators are “Representation
Agnostic” in that it doesn’t matter if a given Individual has a genome of bits, real-values, or some other representation.
Only two operators are dependent on representation, and those will be discussed later.

The next category is broken down by what kind of input and output a given operator takes. That is, generally, an
operator takes a population (collection of Individuals) or an Iterator from which a next Individual can be found.
Likewise, a given operator can return a population or yield an Iterator to a next Individual. So, operators that return an
Iterator can be connected to operators that expect an Iterator for input. Similarly, an operator that expects a population
can be connected directly to a collection of Individuals (e.g., be the second argument to toolz.pipe()) or to an
operator that returns a collection of Individuals.

If you are familiar with evolutionary algorithms, most of these connections are just common sense. For example,
selection operators would select from a population.

With regards to “Representation Dependent” operators there currently are only two: leap_ec.binary_rep.
mutate_bitflip() and leap_ec.real_rep.mutate_gaussian(). The former relies on a genome of all
bits, and the latter of real-values. In the future, LEAP will support other representations that will similarly have their
own operators.

Warning: Are all operators really representation agnostic? In reality, most of the operators assume that
Individual.genome is a python sequence, which may not always be the case. For example, the user may come up
with a representation that employs, say, a sparse matrix. In that case, the crossover operators will fail.

In the future we intend on adding support for other popular representations that will show up as LEAP sub-
packages. (I.e., just as binary_rep and real_rep provide support for binary and real-value representations.)

So, in a sense, for where it matters, LEAP currently assumes some sort of sequence for genomes though, again,
plans are afoot to add more representation types. In the interim, you will have to add your own operators to support
new non-sequence genomic representations.
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Type-checking Decorator Functions

However, to help minimize the chances that pipeline operators would be mis-used the operators have function decorates
that due parameter type-checking to ensure the correct parameters are being passed in. These are:

iteriter_op This checks for signatures of type Iterator -> Iterator

listlist_op Checks for population -> population type operators

listiter_op Checks for population -> population type operators

iterlist_op Checks for population -> Iterator type operators

These can be found in leap_ec.ops.

API Documentation

Base operator classes and representation agnostic functions

Fundamental evolutionary operators.

This module provides many of the most important functions that we string together to create EAs out of operator
pipelines. You’ll find many traditional selection and reproduction strategies here, as well as components for classic
algorithms like island models and cooperative coevolution.

class leap_ec.ops.CooperativeEvaluate(context, num_trials, collaborator_selector,
log_stream=None, combine=<function con-
cat_combine>)

Bases: leap_ec.ops.Operator

A simple, non-parallel implementation of cooperative coevolutionary fitness evaluation.

Parameters context – the algorithm’s state context. Used to access subpopulation information.

class leap_ec.ops.Operator
Bases: abc.ABC

Abstract base class that documents the interface for operators in a LEAP pipeline.

LEAP treats operators as functions of two arguments: the population, and a “context” dict that may be used in
some algorithms to maintain some global state or parameters independent of the population.

TODO The above description is outdated. –Siggy

You can inherit from this class to define operators as classes. Classes support operators that take extra arguments
at construction time (such as a mutation rate) and maintain some internal private state, and they allow certain
special patterns (such as multi-function operators).

But inheriting from this class is optional. LEAP can treat any callable object that takes two parameters as an
operator. You may define your custom operators as closures (which also allow for construction-time arguments
and internal state), as simple functions ( when no additional arguments are necessary), or as curried functions (
i.e. with the help of toolz.curry(. . . ).

leap_ec.ops.clone
clones and returns the next individual in the pipeline

>>> from leap_ec.individual import Individual

Create a common decoder and problem for individuals.
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>>> original = Individual([1,1])

>>> cloned_generator = clone(iter([original]))

Parameters next_individual – iterator for next individual to be cloned

Returns copy of next_individual

leap_ec.ops.compute_expected_probability(expected: float, individual_genome: List)→ float
Computed the probability of mutation based on the desired average expected mutation and genome length.

Parameters

• expected – times individual is to be mutated on average

• individual_genome – genome for which to compute the probability

Returns the corresponding probability of mutation

leap_ec.ops.concat_combine(collaborators)
Combine a list of individuals by concatenating their genomes.

You can choose whether this or some other function is used for combining collaborators by passing it into the
CooperativeEvaluate constructor.

leap_ec.ops.const_evaluate
An evaluator that assigns a constant fitness to every individual.

This is useful for algorithms that need to assign an arbitrary initial fitness value before using their normal
evaluation method. Some forms of cooperative coevolution are an example.

leap_ec.ops.cyclic_selection
Deterministically returns individuals in order, then shuffles the sequence, returns the individuals in that new
order, and repeats this process.

>>> from leap_ec.individual import Individual
>>> from leap_ec.ops import cyclic_selection

>>> pop = [Individual([0, 0]),
... Individual([0, 1])]

>>> cyclic_selector = cyclic_selection(pop)

Parameters population – from which to select

Returns the next selected individual

leap_ec.ops.evaluate
Evaluate and returns the next individual in the pipeline

>>> from leap_ec.individual import Individual
>>> from leap_ec.decoder import IdentityDecoder
>>> from leap_ec.binary_rep.problems import MaxOnes

We need to specify the decoder and problem so that evaluation is possible.

>>> ind = Individual([1,1], decoder=IdentityDecoder(), problem=MaxOnes())
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>>> evaluated_ind = next(evaluate(iter([ind])))

Parameters

• next_individual – iterator pointing to next individual to be evaluated

• kwargs – contains optional context state to pass down the pipeline

in context dictionaries

Returns the evaluated individual

leap_ec.ops.insertion_selection
do exclusive selection between offspring and parents

This is typically used for Ken De Jong’s EV algorithm for survival selection. Each offspring is deterministically
selected and a random parent is selected; if the offspring wins, then it replaces the parent.

Note that we make a _copy_ of the parents and have the offspring compete with the parent copies so that users
can optionally preserve the original parents. You may wish to do that, for example, if you want to analyze the
composition of the original parents and the modified copy.

Parameters

• offspring – population to select from

• parents – parents that are copied and which the copies are potentially updated with better
offspring

Returns the updated parent population

leap_ec.ops.iteriter_op(f)
This decorator wraps a function with runtime type checking to ensure that it always receives an iterator as its
first argument, and that it returns an iterator.

We use this to make debugging operator pipelines easier in EAs: if you accidentally hook up, say an operator
that outputs a list to an operator that expects an iterator, we’ll throw an exception that pinpoints the issue.

Parameters function (f) – the function to wrap

leap_ec.ops.iterlist_op(f)
This decorator wraps a function with runtime type checking to ensure that it always receives an iterator as its
first argument, and that it returns a list.

We use this to make debugging operator pipelines easier in EAs: if you accidentally hook up, say an operator
that outputs a list to an operator that expects an iterator, we’ll throw an exception that pinpoints the issue.

Parameters function (f) – the function to wrap

leap_ec.ops.listiter_op(f)
This decorator wraps a function with runtime type checking to ensure that it always receives a list as its first
argument, and that it returns an iterator.

We use this to make debugging operator pipelines easier in EAs: if you accidentally hook up, say an operator
that outputs an iterator to an operator that expects a list, we’ll throw an exception that pinpoints the issue.

Parameters function (f) – the function to wrap

leap_ec.ops.listlist_op(f)
This decorator wraps a function with runtime type checking to ensure that it always receives a list as its first
argument, and that it returns a list.
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We use this to make debugging operator pipelines easier in EAs: if you accidentally hook up, say an operator
that outputs an iterator to an operator that expects a list, we’ll throw an exception that pinpoints the issue.

Parameters function (f) – the function to wrap

leap_ec.ops.migrate(context, topology, emigrant_selector, replacement_selector, migration_gap)

leap_ec.ops.n_ary_crossover
Do crossover between individuals between N crossover points.

1 < n < genome length - 1

We also assume that the passed in individuals are clones of parents.

>>> from leap_ec.individual import Individual
>>> from leap_ec.ops import n_ary_crossover

>>> first = Individual([0,0])
>>> second = Individual([1,1])
>>> i = iter([first, second])
>>> result = n_ary_crossover(i)

>>> new_first = next(result)
>>> new_second = next(result)

Parameters

• next_individual – where we get the next individual from the pipeline

• num_points – how many crossing points do we allow?

Returns two recombined

leap_ec.ops.naive_cyclic_selection
Deterministically returns individuals, and repeats the same sequence when exhausted.

This is “naive” because it doesn’t shuffle the population between complete tours to minimize bias.

>>> from leap_ec.individual import Individual
>>> from leap_ec.ops import naive_cyclic_selection

>>> pop = [Individual([0, 0]),
... Individual([0, 1])]

>>> cyclic_selector = naive_cyclic_selection(pop)

Parameters population – from which to select

Returns the next selected individual

leap_ec.ops.pool
‘Sink’ for creating size individuals from preceding pipeline source.

Allows for “pooling” individuals to be processed by next pipeline operator. Typically used to collect offspring
from preceding set of selection and birth operators, but could also be used to, say, “pool” individuals to be
passed to an EDA as a training set.

>>> from leap_ec.individual import Individual
>>> from leap_ec.ops import naive_cyclic_selection
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>>> pop = [Individual([0, 0]),
... Individual([0, 1])]

>>> cyclic_selector = naive_cyclic_selection(pop)

>>> pool = pool(cyclic_selector, 3)

print(pool) [Individual([0, 0], None, None), Individual([0, 1], None, None), Individual([0, 0], None, None)]

Parameters

• next_individual – generator for getting the next offspring

• size – how many kids we want

Returns population of size offspring

leap_ec.ops.random_selection(population: List)→ Iterator
return a uniformly randomly selected individual from the population

Parameters population – from which to select

Returns a uniformly selected individual

leap_ec.ops.tournament_selection
Selects the best individual from k individuals randomly selected from the given population

>>> from leap_ec.individual import Individual
>>> from leap_ec.decoder import IdentityDecoder
>>> from leap_ec.binary_rep.problems import MaxOnes
>>> from leap_ec.ops import tournament_selection

>>> pop = [Individual([0, 0, 0], IdentityDecoder(), problem=MaxOnes()),
... Individual([0, 0, 1], IdentityDecoder(), problem=MaxOnes())]

We need to evaluate them to get their fitness to sort them for truncation.

>>> pop = Individual.evaluate_population(pop)

>>> best = tournament_selection(pop)

Parameters

• population – from which to select

• k – are randomly drawn from which to choose the best; by

default this is 2 for binary tournament selection

Returns the best of k individuals drawn from population

leap_ec.ops.truncation_selection
return the size best individuals from the given population

This defaults to (mu, lambda) if parents is not given.

>>> from leap_ec.individual import Individual
>>> from leap_ec.decoder import IdentityDecoder
>>> from leap_ec.binary_rep.problems import MaxOnes
>>> from leap_ec.ops import truncation_selection
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>>> pop = [Individual([0, 0, 0], decoder=IdentityDecoder(), problem=MaxOnes()),
... Individual([0, 0, 1], decoder=IdentityDecoder(), problem=MaxOnes()),
... Individual([1, 1, 0], decoder=IdentityDecoder(), problem=MaxOnes()),
... Individual([1, 1, 1], decoder=IdentityDecoder(), problem=MaxOnes())]

We need to evaluate them to get their fitness to sort them for truncation.

>>> pop = Individual.evaluate_population(pop)

>>> truncated = truncation_selection(pop, 2)

TODO Do we want an optional context to over-ride the ‘parents’ parameter?

Parameters

• offspring – offspring to truncate down to a smaller population

• size – is what to resize population to

• second_population – is optional parent population to include with population for
downsizing

Returns truncated population

leap_ec.ops.uniform_crossover
Generator for recombining two individuals and passing them down the line.

>>> from leap_ec.individual import Individual
>>> from leap_ec.ops import uniform_crossover

>>> first = Individual([0,0])
>>> second = Individual([1,1])
>>> i = iter([first, second])
>>> result = uniform_crossover(i)

>>> new_first = next(result)
>>> new_second = next(result)

Parameters

• next_individual – where we get the next individual

• p_swap – how likely are we to swap each pair of genes

Returns two recombined individuals

Pipeline operators for binary representations

Binary representation specific pipeline operators.

leap_ec.binary_rep.ops.mutate_bitflip
mutate and return an individual with a binary representation

>>> from leap_ec.individual import Individual
>>> from leap_ec.binary_rep.ops import mutate_bitflip
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>>> original = Individual([1,1])
>>> mutated = next(mutate_bitflip(iter([original])))

Parameters

• next_individual – to be mutated

• expected – the expected number of mutations, on average

Returns mutated individual

Pipeline operators for real-valued representations

Pipeline operators for real-valued representations

leap_ec.real_rep.ops.mutate_gaussian
mutate and return an individual with a real-valued representation

TODO hard_bounds should also be able to take a sequence —Siggy

Parameters

• next_individual – to be mutated

• std – standard deviation to be equally applied to all individuals; this can be a scalar value
or a “shadow vector” of standard deviations

• expected – the expected number of mutations per individual, on average. If None, all
genes will be mutated.

• hard_bounds – to clip for mutations; defaults to (- ∞, ∞)

Returns a generator of mutated individuals.

3.3.6 Context

3.3.7 Probes

3.3.8 Visualization
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CHAPTER

FOUR

DISTRIBUTED LEAP

LEAP supports synchronous and asynchronous distributed concurrent fitness evaluations that can significantly speed-
up runs. LEAP uses dask (https://dask.org/ ), which is a popular distributed processing python package, to implement
parallel fitness evaluations, and which allows easy scaling from laptops to supercomputers.

4.1 Synchronous fitness evaluations

Synchronous fitness evaluations are essentially a map/reduce approach where individuals are fanned out to computing
resources to be concurrently evaluated, and then the calling process waits until all the evaluations are done. This is
particularly suited for by-generation approaches where offspring are evaluated in a batch, and progress in the EA only
proceeds when all individuals have been evaluated.

4.1.1 Components

leap_ec.distributed.synchronous provides two components to implement synchronous individual parallel evaluations.

leap_ec.distributed.synchronous.eval_population which evaluates an entire population in parallel, and
returns the evaluated population

leap_ec.distributed.synchronous.eval_pool is a pipeline operator that will collect offspring and then
evaluate them all at once in parallel; the evaluated offspring are returned

4.1.2 Example

The following shows a simple example of how to use the synchronous parallel fitness evaluation in LEAP.

1 import toolz
2 from dask.distributed import Client
3

4 from leap_ec.decoder import IdentityDecoder
5 import leap_ec.ops as ops
6

7 from leap_ec.binary_rep.problems import MaxOnes
8 from leap_ec.binary_rep.initializers import create_binary_sequence
9 from leap_ec.binary_rep.ops import mutate_bitflip

10

11 from leap_ec.distributed.individual import DistributedIndividual
12 from leap_ec.distributed import synchronous
13

14 if __name__ == '__main__':

(continues on next page)
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(continued from previous page)

15

16 with Client() as client:
17 # create an initial population of 5 parents of 4 bits each for the
18 # MAX ONES problem
19 parents = DistributedIndividual.create_population(5,
20 initialize=create_binary_

→˓sequence(
21 4),
22 decoder=IdentityDecoder(),
23 problem=MaxOnes())
24

25 # Scatter the initial parents to dask workers for evaluation
26 parents = synchronous.eval_population(parents, client=client)
27

28 for current_generation in range(5):
29 offspring = toolz.pipe(parents,
30 ops.tournament_selection,
31 ops.clone,
32 mutate_bitflip,
33 ops.uniform_crossover,
34 # Scatter offspring to be evaluated
35 synchronous.eval_pool(client=client,
36 size=len(parents)))
37

38 print('generation:', current_generation)

This example of a basic genetic algorithm that solves the MAX ONES problem does not use a provided monolithic
entry point, such as found with ea_solve() or generational_ea() but, instead, directly uses LEAP’s pipeline archi-
tecture. Here, we create a simple dask Client that uses the default local cores to do the parallel evaluations. The
first step is to create the initial random population, and then distribute those to dask workers for evaluation via syn-
chronous.eval_population(), and which returns a set of fully evaluated parents. The for loop supports the number
of generations we want, and provides a sequence of pipeline operators to create offspring from selected parents.
For concurrently evaluating newly created offspring, we use synchronous.eval_pool, which is just a variant of the
leap_ec.ops.pool operator that relies on dask to evaluate individuals in parallel.

Note: If you wanted to use resources on a cluster or supercomputer, you would start up dask-scheduler and dask-
worker`s first, and then point the `Client at the scheduler file used by the scheduler and workers. Distributed LEAP
is agnostic on what kind of dask client is passed as a client parameter – it will generically perform the same whether
running on local cores or on a supercomputer.
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4.1.3 Separate Examples

There is a jupyter notebook that walks through a synchronous implementation in exam-
ples/simple_sync_distributed.ipynb. The above example can also be found at examples/simple_sync_distributed.py.

4.2 Asynchronous fitness evaluations

Asynchronous fitness evaluations are a little more involved in that the EA immediately integrates newly evaluated
individuals into the population – it doesn’t wait until all the individuals have finished evaluating before proceeding.
More specifically, LEAP implements an asynchronous steady-state evolutionary algorithm (ASEA).

Fig. 1: Algorithm 1: Asynchronous steady-state evolutionary algorithm concurrently updates a population as individ-
uals are evaluated. ([CSB20])

Algorithm 1 shows the details of how an ASEA works. Newly evaluated individuals are inserted into the population,
which then leaves a computing resource available. Offspring are created from one or more selected parents, and are
then assigned to that computing resource, thus assuring minimal idle time between evaluations. This is particularly
important within HPC contexts as it is often the case that such resources are costly, and therefore there is an implicit
need to minimize wasting such resources. By contrast, a synchronous distributed approach risks wasting computing
resources because computing resources that finish evaluating individuals before the last individual is evaluated will
idle until the next generation.
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4.2.1 Example

1 from pprint import pformat
2

3 from dask.distributed import Client, LocalCluster
4

5 from leap_ec.decoder import IdentityDecoder
6 from leap_ec.representation import Representation
7

8 import leap_ec.ops as ops
9

10 from leap_ec.binary_rep.problems import MaxOnes
11 from leap_ec.binary_rep.initializers import create_binary_sequence
12 from leap_ec.binary_rep.ops import mutate_bitflip
13

14 from leap_ec.distributed import asynchronous
15 from leap_ec.distributed.probe import log_worker_location, log_pop
16 from leap_ec.distributed.individual import DistributedIndividual
17

18 MAX_BIRTHS = 500
19 INIT_POP_SIZE = 20
20 POP_SIZE = 20
21 GENOME_LENGTH = 5
22

23 with Client(scheduler_file='scheduler.json') as client:
24 final_pop = asynchronous.steady_state(client, # dask client
25 births=MAX_BIRTHS,
26 init_pop_size=INIT_POP_SIZE,
27 pop_size=POP_SIZE,
28

29 representation=Representation(
30 decoder=IdentityDecoder(),
31 initialize=create_binary_sequence(
32 GENOME_LENGTH),
33 individual_cls=DistributedIndividual),
34

35 problem=MaxOnes(),
36

37 offspring_pipeline=[
38 ops.random_selection,
39 ops.clone,
40 mutate_bitflip,
41 ops.pool(size=1)],
42

43 evaluated_probe=track_workers_func,
44 pop_probe=track_pop_func)
45

46 print(f'Final pop: \n{pformat(final_pop)}')

The above example is quite different from the synchronous code given earlier. Unlike, with the synchronous code,
the asynchronous code does provide a monolithic function entry point, asynchronous.steady_state(). The first thing to
note is that by nature this EA has a birth budget, not a generation budget, and which is set to 500 in MAX_BIRTHS,
and passed in via the births parameter. We also need to know the size of the initial population, which is given in
init_pop_size. And, of course, we need the size of the population that is perpetually updated during the lifetime of the
run, and which is passed in via the pop_size parameter.

The representation parameter we have seen before in the other monolithic functions, such as generational_ea, which
encapsulates the mechanisms for making an individual and how the individual’s state is stored. In this case, because
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it’s the MAX ONES problem, we use the IdentityDecoder because we want to use the raw bits as is, and we specify
a factory function for creating binary sequences GENOME_LENGTH in size; and, lastly, we override the default
class with a new class, DistributedIndividual, that contains some additional bookkeeping useful for an ASEA, and is
described later.

The offspring_pipeline differs from the usual LEAP pipelines. That is, a LEAP pipeline is usally a set of operators that
define a workflow for creating offspring from a set of prospective parents. In this case, the pipeline is for creating a
single offspring from an implied population of prospective parents to be evaluated on a recently available dask worker;
essentially, as a dask worker finishes evaluating an individual, this pipeline will be used to create a single offspring
to be assigned to that worker for evaluation. This gives the user maximum flexibility in how that offspring is created
by choosing a selection operator followed by perturbation operators deemed suitable for the given problem. (Not
forgetting the critical clone operator, the absence of which will cause selected parents to be modified by any applied
mutation or crossover operators.)

There are two optional callback function reporting parameters, evaluated_probe and pop_probe. evaluated_probe
takes a single Individual class, or subclass, as an argument, and can be used to write out that individual’s state in a
desired format. distributed.probe.log_worker_location can be passed in as this argument to write each individual’s
state as a CSV row to a file; by default it will write to sys.stdout. The pop_probe parameter is similar, but allows for
taking snapshots of the hidden population at preset intervals, also in CSV format.

Also noteworthy is that the Client has a scheduler_file specified, which indicates that a dask scheduler and one or more
dask workers have already been started beforehand outside of LEAP and are awaiting tasking to evaluate individuals.

There are three other optional parameters to steady_state, which are summarized as follows:

inserter takes a callback function of the signature (individual, population, max_size) where individual is
the newly evaluated individual that is a candidate for inserting into the population, and which is the
internal population that steady_state updates. The value for max_size is passed in by steady_state
that is the user stipulated population size, and is used to determine if the individual should just be
inserted into the population when at the start of the run it has yet to reach capacity. That is, when a
user invokes steady_state, they specify a population size via pop_size, and we would just normally
insert individuals until the population reaches pop_size in capacity, then the function will use criteria
to determine whether the individual is worthy of being inserted. (And, if so, at the removal of an
individual that was already in the population. Or, colloquially, someone is voted off the island.)

There are two provided inserters, steady_state.insert_into_pop and greedy_insert_into_pop. The
first will randomly select an individual from the internal population, and will replace it if its fitness
is worse than the new individual. The second will compare the new individual with the current worst
in the population, and will replace that individual if it is better. The default for inserter is to use the
greedy_insert_into_pop.

Of course you can write your own if either of these two inserters do not meet your needs.

count_nonviable is a boolean that, if True, means that individuals that are non- viable are counted to-
wards the birth budget; by default, this is False. A non-viable individual is one where an exception
was thrown during evaluation. (E.g., an individual poses a deep-learner configuration that does not
make sense, such as incompatible adjacent convolutional layers, and pytorch or tensorflow throws
an exception.)

context contains global state where the running number of births and non-viable individuals is kept. This
defaults to context.

4.2. Asynchronous fitness evaluations 69



LEAP: Library for Evolutionary Algorithms in Python Documentation, Release version 0.4.0

4.2.2 DistributedIndividual

DistributedIndividual is a subclass of RobustIndividual that contains some additional state that may be useful for
distributed fitness evaluations.

uuid is UUID assigned to that individual upon creation

birth_id is a unique, monotonically increasing integer assigned to each indidividual on creation, and
denotes its birth order

start_eval_time is when evaluation began for this individul, and is in time_t format

stop_eval_time when evaluation completed in time_t format

This additional state is set in distributed.evaluate.evaluate() and is_viable and exception are set as with the base class,
core.Individual.

Note: The uuid is useful if one wanted to save, say, a model or some other state in a file; using the uuid in the file
name will make it easier to associate the file with a given individual later during a run’s post mortem analysis.

Note: The start_eval_time and end_eval_time can be useful for checking whether individuals that take less time
to evaluate come to dominate the population, which can be important in ASEA parameter tuning. E.g., initially the
population will come to be dominated by individuals that evaluated quickly even if they represent inferior solutions;
however, eventually, better solutions that take longer to evaluate will come to dominate the population; so, if one
observes that shorter solutions still dominate the population, then increasing the max_births should be considered,
if feasible, to allow time for solutions that need longer to evaluate time to make a representative presence in the
population.

4.2.3 Separate Examples

There is also a jupyter notebook walkthrough for the asynchronous implementation, exam-
ples/simple_async_distributed.ipynb. Moreover, there is standalone code in examples/simple_async_distributed.py.
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SEVEN

LEAP COOKBOOK

7.1 Enforcing problem bounds constraints

There are two overall types of bounds enforcement within EAs, soft bounds and hard bounds:

soft bounds where the boundaries are enforced only at initialization, but mutation allows for exploring
beyond those initial boundaries

hard bounds boundaries are strictly enforced at initialization as well as during mutation and crossover.
In the latter case this can be done by clamping new values to a given range, or flagging an individual
that violates such constraints as non-viable by throwing an exception during fitness evaluation. (That
is, during evaluation, exceptions are caught, which causes the individual’s fitness to be set to NaN
and its is_viable internal flag set to false; then selection should hopefully weed out this individual
from the population.)
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CHAPTER

EIGHT

ROADMAP

The LEAP development roadmap is as follows:

1. pre-Minimally Viable Product – released 1/14/2020 as 0.1-pre

• basic support for binary representations

– bit flip mutation

– point-wise crossover

– uniform crossover

• basic support for real-valued representations

– mutate gaussian

• selection operators

– truncation selection

– tournament_selection selection

– random selection

– deterministic cyclic selection

– insertion selection

• continuous integration via Travis

• common test functions

– binary

* MAXONES

– real-valued, optionally translated, rotated, and scaled

* Ackley

* Cosine

* Griewank

* Langermann

* Lunacek

* Noisy Quartic

* Rastrigin

* Rosenbock
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* Schwefel

* Shekel

* Spheroid

* Step

* Weierstrass

• test harnesses

– pytest supported

• simple usage examples

– canonical EAs

* genetic algorithms (GA)

* evolutionary programming (EP)

* evolutionary strategies (ES)

– simple island model

– basic run-time visualizations

– use with Jupyter notebooks

• documentation outline/stubs for ReadTheDocs

2. Minimally Viable Product, second part – released 6/14/2020 as 0.2.0

• distributed / parallel fitness evaluations

– distribute local cores vs. distributed cluster nodes

– synchronous vs. asynchronous evaluations

• variable-length genomes

• Gray encoding

3. Future features, in no particular order of priority

• parsimony pressure

• multi-objective optimization

• minimally complete documentation

– fleshed out ReadTheDocs documentation

– technical report

• checkpoint / restart support

• hall of fame

• Rule systems

– Mich Approach

– Pitt Approach

• Genetic Programming (GP)

• Estimation of Distribution Algorithms (EDA)

– Covariance Matrix Adaptation Evolution Strategy (CMA-ES)
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– Population-based Incremental Learning (PBIL)

– Bayesian Optimization Algorithm (BOA)
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CHAPTER

NINE

INDICES AND TABLES

• genindex

• modindex

• search
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